SQL Server 2000 Handbook

SQL Server 2000 Handbook

2" Edition
Author: Stamati Crook
stamati@redware.com
Date: 18 October 2001
Version: 4.0

© REDWARE 1996, 2001.

© REDWARE 1996,2001. 1

SQL Server 2000 Handbook

Shareware Licence

Copyright © REDWARE 1996, 2001.

8 September 2001 - Version 4.0

All rights reserved. This book is shareware and may be downloaded and stored on a
single computer for 30 days for the purposes of evaluation only. Registration is
required by making the appropriate payment at the redware website. The book is
copyright and no part shall be reproduced, stored in a retrieval system, or transferred
by any means: electronic, mechanical, photocopying, recording, or otherwise without
written permission from the publisher. No patent liability is assumed with respect to
the use of the information contained herein. Although every precaution has been
taken in the preparation of this handbook, the publisher and author assume no
responsibility for errors or omissions. Neither is any liability assumed for damages
resulting from the use of the information contained herein. For information, please
contact:

redware research Itd, 104 Tamworth Road, Hove BN3 5FH, England.
http://www.redware.com

Acknowledgements

Second Edition September 2001

Thank you this time to Victor, Phong and especially James for helping build really big
database systems during our roller coaster ride at First Telecom. Thanks also to the
job market for letting me take a break and update this book.

First Edition December 1996

Thank you to the technical team at F1 Computing Systems past and present for eight
years of implementing FoxPro projects. All of my FoxPro experience has resulted
from working with lan, Phong, James, Danny and David on various projects during
my eight years at F1. They still have the best training courses and FoxPro team in the
UK.

Thank you especially to James Thornton at F1 Computing who put me straight on a
few things regarding SQL Server. Any errors remaining in this book are, of course,
down to me and | apologise in advance for them. Please email me with your
comments, good and bad.

© REDWARE 1996,2001. 2

SQL Server 2000 Handbook

1. Contents

R O @] NV I = AV 15 TR 3
2. SQL SERVER OVERVIEW ...ttt ettt sttt b et eaa et s re et 6
RELATIONAL DATABASE TERMINOLOGYccoiiiuutiiiiieiiiiiisrieiessssassssssesssssssssssssesssssssssssssesssssssssssseessssssssnes 6
SQL SERVER HISTORY ..ttt ittt ettt sttt et stae st saa et e e sat e e bae e saae e sbae e saaeesate e snteesbbeenneeennbeennneesneeas 6
Y 7= =TSSR 6
SOL SEIVEN 4.2 ..ottt ettt et et e e be st e et e s ae e b e e ae e e e be st e besbeebeeaeeaeeaae e e besbeebeebeenbesrententens 6
SOL SEIVEE 8.0 ..viiiiciecie ettt ettt e st e s te e te et e eae e e be e be et e e st e sasesheesbeesbeenteeaeeeaeeebeebeenbeeabeeabeenrennnes 7
SOL SEIVEL B.5 ..ottt sttt et et b e b e e b e et e s aae s hee s heeehe e teeareeaeeebeebeebeeebeesbeerenanas 7
SOL SEIVEL 7.0 .ttt ettt st e st s b e be st e e bt e e b e et e et e e st e saeesheesbeeabeanteeaeeeaeeebeebeeabeeabeeabeenrenanas 7
SOL SErVEL 2000......ccueeeteeeteeireeiteeiteeiteseeseesteeeteebeeseessaesbeesbeebessesasesasssaeeassebeenbeeasesssesteesbeesbeensesanes 7
SQL SERVER FEATURESuviitieiteeiteeiteeteseesteesteasseesteessesssessessseestesssesssessssssssssssssesssesssessssssesssesssesssenssesnnes 8
L= 5= (ot (o L 8
(D= 1= B Toi ([0 g7 YRS USRI 8
(000) 051 =11 0L E TR 8
Sructured QUENY LANGUAGEceuvereerterteeteeiieieeteseeste sttt saeeseeeeseesbesaesbesaeeseseeseesbesaessesneensensesseseesns 8
ENterPriSe NEIWOIKING.coveieeieeeieeeeie st sttt e bbbt et e e e s b besbenbesbesne s 9
P Ao [0 01 01K A= LT) [T 9
CONNECEIVITY ...ttt ettt e h e h et et e e et sh e s beeaeehe e e e b e seeabesbesbeebenneenseseenbesaenaeas 10
RN 10
LI o (L= £ 10
S (0] 0 [o 0110 LU < 10
S o] o 11 o o TS 10
USEr DEFINEA FUNCLIONS.veiivee it cetee ettt st estee et esteesbe s sebessabesssbessabesssbessabesssbessabessnsessnnesans 11
D TR 11
[LY, TSR 11
3. SOL TOOLS ..ottt ettt e st e st e s be et e ebeeaeebe et e besbeebesbeebeeseensantesrenbestenreenis 12
SERVICE IMANAGER.ttttiiieiiieittetiee et e e sibbs st e s e s s s sabbsaeeesssssabb e seeeeassaasbsbbaaeeassessss bbb beeassssssbbabaeesesssnsbarannnas 12
ENTERPRISE MANAGER......ccctttiiiiiiiiiittteieesseesibbsateassssssbbsseessesssabasseeasesssas bbb baeseasssssssbbaseeassesssbbsaeessseinn 12
REGISLEr ThE SEIVES ...ttt e bbbttt e e e b sae e 13
SOL QUERY ANALYSER....cteeiteeiteeiteeiteieeaseesteesteessessssssesssesssesssesssesssssssessesssesssessssssesssesssesssesssssssssesssesnns 14
(O @ OO 15
A, SOL SYNT AX e iiieitectt et eteetee st e ete e etesiae st e sbeesteetesaeeebeeabe e besabesasesaeesbeesbeesesasesaeesbeetesnbesssesseesaness 16
== 16
S I O IS 7N 1 =Y 1= N 16
[T Lo I T 17
WWHERE ClAUSE ...ttt ettt ettt et e s et e s s bt e e s e st e e s s eabe e e s asbeeesssbesssbbeesssabaeesasaeessssbenass 17
ATAY 1o 0= T LSRR 18
FROM ClAUSE........eeeiiiiteie ettt e ettt e e ettt e s st e e e s s bbe e s s abe e s s esbeeessabeesssasbeessssbaeessabeeessnreeessanens 18
(@] (D] = =) TR 19
[INF= LU = N (o 11 o TR 19
(7R (@0 o =) O F=TU s 19
[NN E N O = TU 20
[0 11 11 (O T 20
[T = N LB =) o o 20
(@ 11 N [0 o T 21
SUD QUETTES ...ttt sttt et e te et e et e e beesbeesbeesbeesbesasesaeesaeesbeeabeenbeenbesnbesanesanens 21
UNTON. .ttt sttt st e et e e st e e eae e s s atessatessaaessaeeesaseesaeessabessseessasessseeesabessssessasessnbessseesrnsans 21
FOR XML mode [, XMLDATA] [, ELEMENTS [, BINARY BASEGA]ccccvvrivreninireninesieneenens 22
LS I O I 1\ O TR 22
NS = IS N = = IO 22
L0 N I Y N 1 =Y 1= N PSR 23

© REDWARE 1996,2001. 3

SQL Server 2000 Handbook

(D] I I Y =Y 1= 23
5. DATABASE DEFINITION ..ottt e ettt eae e s s b e s eeatee s senseeessnbeeesenneesesnnnns 25
ENTERPRISE MANAGER.......cctttieeettieeeteeeesetteeeeeteeesesaseessasseessaseessassseeesasseeesabesesanssesssassesessnseeessnssesssassens 25
(O] =N B Ny 7Y =X 26
(O =7y 1 =N 1Y =] = 28

I L= Y/ - TS 29

NI EX= 1 (o [D= =10 | £ 30

LI o LT @ g1 £ o 1 o USSR 30
FIELD PROPERTIES ..uvtiiiiiiiiiiittiii s e e ettt e e s s e s sabb s st s e e s e s s bbb b e e e e e s s s bbb b e e e s e s e e asbbb b e e s easseesasbbaeeeassessnsbbrbeeeeseaan 31

INUIT WAIUBS ...ttt ettt e s e e e e e bt e e e bt e s s bae e e s sabeesseaeesssabanesssabesessnreeessanens 32
DEFAULT CONSTRAINTS. .. ctttteiteeetiisitbbreteessessisbbssteessesssabbsseeasssssassassesseesssasssbbssseasssassbbsssessssssssbbsanessssins 32
CHECK CONSTRAINTS 1tttttiiiiiiiiittttteesseasibbssteessessabasssesssssaassbsseeesessaasssbbssteasssssasbbsseeesssssasbbsbaessesssssssrsnnss 33
(O 7 =N o LT - = A 20 1 =2 34

[0 =11 VA 0] 1 01 P 34

LT T (U1 Ko = 1 1= S 35
PRIMARY KEY CONSTRAINT ...eieittteeietteeeeeitereeibeeeesssbesesassesssssesesasssesssasssssssssesesasssesssasssessssseresesssessssssenes 36
FOREIGN KEYS AND REFERENTIAL INTEGRITY ..vveiiiittieeieteeesiieeesessteseesssseessberssesssesssessessssssesesesssesssensnes 36
USER DEFINED DATA TYPES. ... ccttieiiettiieeette e e ettt e e e ete e e eeaeeessbeeesesstesesasseeessbeeesaastesssesseesssbeeeseastesesansenas 38
DEFAULTS AND RULESo ciittiiiiii ettt ee s s sttt e s s e s s bbb s e e e s e s s s bbb e e e e e s s e s bbb b e e s eassssssabbaeeeassessssbbraeesessian 39

(D<= LU TR ORR 39

RUIES.... ettt ettt e ettt e e ettt e s s e e e s s e abe e e s eabeesssbseesssbbeeesasbeesssbansssasbeeesabbesesannns 39
ST 1A\] S SRRSO 40
UNIQUE INDEX CONSTRAINT 1etttttiitiiisitbrriiesesssissbaseessesssasisssssssesssesssssssssessssiassssssessesssessssssssesssesssssssseesss 40
(O ESy = = N 1] =t G 40
R VA 1 LYY T 42
LN = YT =TS 43
(O] =0t Q@ = T 43
PARTITIONED VIEWS.....teiiiitteieeeteee e eteee s eetteeeeasteeeseaseassasaesssasseessasseeesasseeesanbesesanssesssassesesansenessnseesssassnes 43
(@] = N R A S 1 43
LINKED SERVERS ...ututiiiiiiiiiiitteiies et sesissbsetesssesssssssssasssssssssssessssssasssssssssssssssssssssessssssssbssssessssssssssssnessssss 44
TEMPORARY TABLES .. uuttttiiiiiiiiiitttiees s e s sibbttreasssssbbaaeesssessasbbbbeeessssa s b b s beeeeessaasbbbbeeeeessassbbbbaneessssasssrannnas 44
8. STORED PROCEDURES...... ittt sttt sttt e et e s s st e e s s sab e e e sentae e s sanns 46
EXECUTING A STORED PROCEDUREutttiiiiiiiiiititiiiie e sesitberis e s e s e sibbasseesssssasbbasasssssssessbsbasssesssessssbssssessas 47
PASSING PARAMETERS.ccitttttiiieeiieiittreiessseesibbseeeessesssabbsseeesesssa bbb seeseessaassbbbseseasssasssbbaseeassesssbbsaneassesas 49
RETURNING A VALUE ...ttt iitttteiiee s ettt e e s s e e sbbaae s e e s e s s bbs s e e e s s s s s bbb beeesessas bbb b aeseasseasssbbaeeeessessssbbsaeeasseian 50
OUTPUT PARAMETERSveeeittie e ettie e ettt e e eesteeesssseeasabeeesesssesssassesesabesesassesssasseeesassesssassesessaseeessassesesassens 50
PROGRAM STRUCTURESttiiieittieeeteeesiesteeesesteresssssesssasseessasesssasssesesasseeesassessssassesssassesessnsersssnsesesssens 51
[0 T07 N I 47 = = I =S 52
SYSTEM VARIABLES.....ccuteeeeeteieeeteeeeeetteeeeeteeesesseeesabeeesasssesesassesesabesesasaesssasseessastesssasseeessaseeessassesesassens 53
SCALAR FUNCTIONS ... tteee ettt e e ettee e ettt e e et e e s esteeesasbaeeseaaeessasseeeeanbeeesassaeessasseessansesesansesessseeessassensssnsnes 53
CASE EXPRESSIONutttiiiiiiiiiiitietiessieisibssstessssssasssssessssssassses 54
(O8] =457 =S TSR 55
SYSTEM PROCEDURES......cciiiiiiiittitiie e i e siittr ittt e s s e s sebbbae e e s s s s sasbbaseeesessaasasbbeseeassssssbbabeeessssssbbbbaeesssssababrnenas 56
EXTENDED PROCEDURES.......utttiiiiiiiiiittireieessesiitssseesssssssssssssessssssassassssssssssssssssssssssssssssbssssesssssssssssseessseis 57
EXTENDED MAIL PROCEDURES........cccocttttiiiiiiiiiibateiese s s sesiabastsesssessasbasssesssssasbasssssssssesbsbssssesssessssbsssneesss 57
[l (0 ol o Y N o I | LSS 58
Q27NN LT\ 1] 59
DISTRIBUTED TRANSACTIONSutiiiiittieeieitereeireeeeesstesesesssesssssesesasssesssasssssssssesesasssesssassssesssseresesssessssssenes 61
L0 T I T] =t 62
TRIGGER PROGRAM STRUCTUREuutiiitteieieitteeeeiteessiseeesssstesessssssssssesssasssesesssssssssssssesssssesssssssssssssenesans 62
FIELD LEVEL VALIDATION ...vtiiiiteieeeetteeeeeteeeeebeeeeesstesssesssessssssesssssesssassssssssenesasssesssassssssssseressssessssnsenes 64
RECORD LEVEL VALIDATIONuttiieiitteieeeiteteeiiseresesstesesasssesssssesesasssesssasssssssssesesssssesssassssssssseresssssessssssenes 65
CHECKING VALUES AGAINST ANOTHER TABLE .. .uuttiiiiiiiiiiiitiiii e sesitteee s e s s sesasbssesesssesssbasssesssessnsbssssessas 65

© REDWARE 1996,2001. 4

SQL Server 2000 Handbook

PREVENTING CHANGES TO A FIELD ...viutitirienietesiieeiesteeeieste ettt sbe bbbttt e s st neenenes 65
REFERENTIAL INTEGRITY CHECKS ...c.viutitiitiueetesiesiesesteseesesteseesesaes st ssessesessesbesessestenessestenessessensssessensesees 66
(@aTc o T aTo = o = o [T Y S 66
Ensuring Unique Candidate KEYScoeie it see e st se e e sne e sne s 67
Checking Referential Integrity ON DEIELE.......cveeiire e s enea 67
CASCADING DELETE ...tttieuiitiseeicstestet sttt sttt st be bbbt e st st e e e bt s b e e et st et e st s be e et sbe b enesbenene 67
UPDATING ANOTHER TABLEutttitttiitieitesssteestesssteessbessssessstesassaessbesaasaessbesaaseeessasesseessseeesseeesssessssenssnes 68
10. SQL SERVER OPTIMISATION ..ottt ettt saeneene 70
QUERY OPTIMISATION .ttttuttteitteesesessesassesassesassesassesasssssssesasssssssesassessssesassessssssassessssesassessssessssessssessssesssses 70
UPAAEE SEALISHICS. ..t vereeeeeeeie sttt sttt ettt e b et e ae e e e e eesb e s b e saeebe et enseseesbesbesaeennans 70
(110 Lo B TS To o FO USSP 70
(O] 1= 1 oo USSR 72
S 101110 =T o S 72
S I I =T SR 73
(O o110 0TS = 1= 74
CLUSTERED INDEXESttutttttttrtetestestesestestesessessesesseseesessestenessessensssestensssestensesessensesessensesessensesessensenessensens 74
INDEX TUNING WIZARDviuiitiitiietisieseetesteseetesteseesesteseebesbeseesesaeseesesteseesesseseebesteneebesaeseesesteneesesseneesessenens 75
STORED PROCEDURE RECOMPILATIONcittiteiettsteseetesteseesestesessestesessesteseesestesessestesessestesessessessssessensesenes 75
DEFERRED UPDATEStiiuttiittititeestteesteesstesssseessseesssesssseasssesssseasssessssessssessssessssessssessssessssesssessssessssesssses 76
LOCKING ISSUESveiiutiiiitieiiitestee sttt e steesate e steesate e ssaeesateassteessbe e s aeeesab e e saeeesabeeanteesabeesaseesabeesateesateasnseennreas 76
11 CONFIGURATION ..ottt sttt stese et ssesa st e sseseesessenaesessesaesessensnsessenes 78
SERVER CONFIGURATION ..ttt ittt ittt esteeesessstesesessstesassessssasassessssasasessssssansessssssassessssesassessssessssessssessssessses 78
IVIEIMIONY .ttt ettt b ettt et s he e et e she e eR e 2 et eae e ehe e eRe e b e e n Rt e R b e eREesRe e sheeeRe e aReeaeeeaneeneenneanes 78
LOCK ESCalation PErCENTAgE.cveveiereirestestesteseeeesees e see s et sresse e eseeseestesaesresseeseeseeneenseseessessenns 79
NEWOTK PACKEL SIZEottt b e e r e ne e enne e nne e 79
(00T AT DT (=107 == 79
(S 0] = 1 o S 79
DATABASE CONFIGURATIONtuttttetenetestesessessessesessessesessessesessessenessessenessensenessessensasessensesessensesessensesens 80
S X 011 oo | o TS 80
Truncate Log 0N CheCKPOINoiiiiiiiee e et b see b 80
DElEtiNg 8 DAtaASE.ccuecverueeiereeieie ettt ettt se et et et e et eb et et e be e e beseesbenaene 80
BACKUPS. ... ettt sttt sttt s e st e st e e ettt esaee e sa bt e eRee e eRbe e e R e e e oA et e eRee e R be e eREe e R beeeageenRee e nateenateenreennres 80
2 L @1 | I TS 81
SERVER LOGINS .. utititteetee s steeetee s steeetee s teeebee s baeasee s baeesee e baeaase e e taeease e e beeeaseeebeeabeeebaeeseeebaeeneeenees 81
DATABASE USERS ...ciutiiitieiiieeitee sttt e st e ste s ste e sa e e sste e sa b e e s te e sabe e s aee e s st e e saeeesabeesabeesabeesabeesabeesnteesateasnseenneeas 82
= 0TS 0] 1S 83
T V1 ST 85

© REDWARE 1996,2001. 5

SQL Server 2000 Handbook

2.SQL Server Overview

Relational Database Terminology

Relational database theory was first defined by Edgar Codd on the principle that relationships
between database tables could be defined by the programmer rather than implicitly in the
database definition. Thisimproved on the flexibility of the hierarchical database and allowed
the programmer to join any two tables together on any common field as required at the
application level.

Therelational model defines tables as a collection of fields (domains) which contain values
stored asrecords (tuples) in the table. Each record must have aprimary key which uniquely
identifies the occurrence of the record within the table. Fields are defined as numeric,
character, date and so forth and may or may not contain values. A relational database can
distinguish between a blank or zero and an empty or null value.

The programmer may define ajoin between two tables on any common field. Thisis usually
determined by the database designer who includes foreign key valuesin the child datafile that
contain primary key values of the parent datéfile to allow corresponding records to match up.
The programmer may however join tables on any field or fields of the same datatype in both
tables to create a many-to-one or one-to-one relationship. Note that many-to-many
relationships may not be implemented in arelational database and are implemented with a
virtual link table containing foreign key relationships to each of the parent tables.

A Database Management System (DBMYS) usually has a database definition language
(DDL) which allows for the field types and tables to be defined and a data manipulation
language (DM L) which alows for the retrieval and update of data. The manipulation
language often comesin several formats allowing access to the database from a variety of
programming languages.

Codd went on to define a combined database definition and data manipul ation language called
Structured Query Language or SQL (pronounced Sequel). Thiswasimplemented in IBM's
first relational database product and has now become the standard for most relational database
systems. Many older hierarchical and network database management systems also allow data
manipulation by interpreting SQL syntax to perform operations on data stored in more
traditional logical database formats.

SQL Server History

Sybase

Sybase come into the fray over ten years ago as a pure implementation of an RDBM S taking
into account many of the technical refinements of the first generation RDBMS. The
implementation is functionally equivalent and an effective competitor to relational database
products from Oracle, Ingres and IBM DB2. Sybase runs on many large UNIX computers and
is compatible to alarge extent with SQL Server.

SQL Server 4.2

Microsoft licensed Sybase technology for use on their operating systems and SQL Server isan
implementation of Sybase 4.2 on the OS2 and Windows NT platforms. The NT version offers
the technical advantages of the Sybase implementation coupled with a visual administration
tool and very cost effective transaction rates.

© REDWARE 1996,2001. 6

SQL Server 2000 Handbook

SQL Server 6.0 Splash Screen

e

& Microsoft Corporation 19851945

SQL Server 6.0

SQL Server 6.0 isarewrite of the original SQL Server product that takes advantage of the
Windows NT Operating System and allows remote management of a collection of enterprise
wide servers. Microsoft are following an independent path from Sybase and have incorporated
advanced features such as Replication and support for multi-processor hardware in this
version.

SQL Server 6.5

SQL Server 6.5 contains several performance improvements particularly in areas where many
users are accessing the same portion of atable for updates. This improves various contention
scenarios when many users are attempting to add records and compete to add sequentially to a
clustered index for example.

Replication is al'so much improved and can now replicate with other ODBC data sources as
well asinterface with Oracle or other more complicated corporate situations.
SQL Server 7.0

SQL Server 7.0 re-engineered the product to use native Windows NT files for amore logical
integration with backup systems. Many of the configuration parameters became * self-tuning’
to avoid the need for a DBA on smaller systems.

SQL Server 2000

More improvements for the DBA including an index tuning wizard which suggests potential
indexes to be placed on tables. Introduction of user defined functions and partitioned views
and functionality to support XML.

© REDWARE 1996,2001. 7

SQL Server 2000 Handbook

SQL Server Features

SQL Server isafully fledged relational database server that runs on all versions of Microsoft
Windows. The server software is licensed from Sybase and there is a high degree of
compatibility with large scale Sybase servers.

Transactions

Many DBMS allow for the concept of atransaction which is a programmer defined unit of
work. The programmer defines the beginning and the end of the transaction and any changes
made to the data in the database are logged in a transaction log until the programmer

compl etes the transaction with a Commit command. The database will then write al of the
transactions into the database. If there are any problemsin completing the transaction, for
example arecord locking deadlock occurs with another user, then the DBM S will Rollback
the database as if the transaction never happened.

The transaction log may also help with database recovery in case of a hardware failure in that
the database can be rolled forward using the transaction log from a previously saved state until
the last fully completed database transaction.

Correct use of programmer defined transactions allows for the data stored in the database to be
correct at al times even if a hardware failure interrupts the program flow.

Data Dictionary

Usually an RDBM S will support adata dictionary. Thisis a set of tables which are stored in
each user database and are referred to as system tables. SQL Server maintains several system
tables each containing information about different parts of a database. For example a system
table, called SYSINDEXES, exists in each user database which contains information about all
the indexes set-up on tables across the users database.

These system tables can be queried and viewed like any other table but are usually hidden
from the user to avoid confusion and can also be accessed using system stored procedures.

Constraints

Constraints may often be defined in a Database to allow data to be checked by the database
software before it is added or modified in the database. This has the advantage of ensuring
that datais always valid as a program cannot pass in data that breaks a constraint and also
allows these checks to be implemented once in the database software rather than in each
application that updates the database.

Structured Query Language

The structured query language (SQL) used in SQL Server isvery similar to the ANSI SQL
standard. Following are a few examples of SQL commands, more detailed explanations of the
commands available can be found in the Transact-SQL Reference manual supplied with SQL

Server.

Creation of atable:

CREATE TABLE contact
(contact_id cid,

name varchar (30),

address varchar (60),
telephone number varchar (20),
rating tinyint)

Insertion of arecord into atable:

INSERT INTO TABLE contact
(contact_id,
name,

© REDWARE 1996,2001. 8

SQL Server 2000 Handbook

address,

telephone number,

rating)

VALUES

('00003215"',

'John Brown',

'67 North Street, Guildford, Surrey',
'0327-7384629"',

8)

Updating of arecord:

UPDATE contact
SET telephone number = '01327-7384629"',
rating = 9

WHERE contact.contact id = '00003215"
Deletion of arecord:
DELETE contact

FROM contact

WHERE contact.contact _id = '00003215"

In addition to the standard SQL functions, SQL Server supports extensions to the traditional
syntax to allow the implementation of outer joins and other enhancements to the language.

SQL Server also implements a programming version of the SQL language known as Transact
SQL which isused in the definition of program scripts for triggers and stored procedures.

Enterprise Networking

SQL Server is part of the BackOffice suite of programs designed to run on Microsoft NT
Advanced Server. The technology is suitable for Enterprise Networking where many NT
Servers are situated throughout an organisation connected together in a Wide Area Network.

SQL Server may beinstalled on some or al of the serversto provide departmental databases.
Programs may access more than one database if required. In addition, a SQL user may be
configured as a remote user on another server so that the two servers communicate by
automatically logging the user onto the second, remote, server to allow accessto data.

Further facilities such as security that isintegrated with network security, replication of data
between servers, remote administration of servers from a workstation, and integration with
electronic mail make SQL Server agood choice for a multi-server networked environment.

Administration

Administration of the server is performed through the SQL Enterprise Manager which allows
for the management of any server on the LAN or WAN using client software running on
Windows 95 or Windows NT.

Microsoft have implemented software components which can connect to SQL Server
administration functionality for programmatic control of complex administration and system
management.

SQL Server has atask management program that schedules activity at regular intervals. This
activity includes the implementation of replication triggers which replicate data between
servers.

The current Tasks can be viewed with the Tools-Task Scheduling... menu option in the SQL
Enterprise Manager.

© REDWARE 1996,2001. 9

SQL Server 2000 Handbook

Task Scheduling Window

[-[TaskScheduing-(OCA) [-[-
[lale] (a]m) (5] (=

Tazk | Qe | Type | Frequency |Laszt R

User security may be automatically inherited from the Network Configuration and the
specification of physical devices for the database isfairly straightforward. The database can
take advantage of sophisticated operating system features such as RAID fault tolerant disksto
supplement the security features of mirrored transaction logs.

Connectivity

Microsoft provide the latest ODBC and OleDB drivers for SQL Server to provide some of the
highest connection speeds available from a variety of programming environments. ADO
ActiveX data object provide a convinient way to manage OleDB data sources and a well
integrated with a SQL Server environment.

Gateways exist to transparently connect a request for SQL Server data through to a Mainframe
database.

Views

Views on data may be easily defined to allow local or global corporate database schemas to be
defined and yet allow for the underlying local structure to be changed if required without
affecting existing programs.

Triggers

Triggers allow programs to be executed on the server whenever data is updated to prevent
updates or to perform processing,

Stored Procedures

Stored procedures are programs that run on the server using an enhanced form of SQL called
Transact-SQL. Thisincludes program control functionality and the facility to call external
programs residing on the server such as electronic mail.

There are considerable benefits in getting the server to perform tasks rather than calling a
workstation process. Thisis particularly relevant in high transaction systems which interface
with other components of the computing infrastructure as network traffic is not a bottle-neck
when the processing is performed solely on the server,

Replication

Datais published on one server and other servers are defined as subscribers to that data. The
SQL Executive copies data regularly during the process of database synchronisation.
Replicated datais not modifiable on the subscription databases.

© REDWARE 1996,2001. 10

SQL Server 2000 Handbook

User Defined Functions

User defined function (new in SQL 2000) allow Transact-SQL to be used to create a program
that returns a single value or one that returns a cursor. The former allows re-usable functions
to be used in program implementation and the latter provides a programmatic alternative to
defining aView.

XML
XML has considerable support in SQL 2000 and allows fully formed XML filesto be returned
directly from a server stored procedure without the need of any further middleware.

HTML

SQL Server has been integrated with Internet Information Server to serve directly to an http:
request. This can provide powerful functionality when used together with stored procedures
return XML in combination with an XLST formatting file.

© REDWARE 1996,2001. 11

SQL Server 2000 Handbook

3.SQL Tools

Service Manager

SQL Server runs as a service on Windows NT Advanced Server and is usually configured to
autostart. The SQL Service Manager can be used to start SQL Server running and must be run
on the server itself. Simply bring up the window and press the buttons to start and stop the
server.

SQL Service Manager

50 SOL Server Service Manager !EI
Server. |REDNTS 001 |
Services: ISIIJL Server j

Refresh services... |

b StartEantinie

¥ Auto-start service when 05 starts

Rurring - ““REDNTS001 - MSS0LServer

Other services may also be controlled by the service
manager by selecting from the Services combo.

Enterprise Manager

The SQL Enterprise Manager is the administrative interface for SQL Server allowing the
accessto all of the features of SQL Server. SQL Enterprise Manager utilises Microsoft's
Distributed Management Framework (DMF) so that any SQL Server installation can be
controlled from Windows 95 or Windows NT workstation.

After registering a SQL Server installation on the SQL Enterprise Manager, the Server can be
controlled through use of the outline control. Clicking on the Server will bring up an outline
which contains the objects controlled by the server.

© REDWARE 1996,2001. 12

SQL Server 2000 Handbook

:m SOL Server Enterprize Manager - [Console Boot\Microsoft SOL Servers\SOL Server Group__. =] E3

Jrﬁj Conzole Window Help |;Ii|5|
|J Action Miew Toolz |J¢=#||XI§'|@|J%}% \|E(f Ea |
Tree I Tables 32 ltems
[Comscls Float -] Mame ¢ | [wner | Type =~
El Microzaft SOL Servers authars dbo Uzer
Eﬁ SOL Server Group dizcolinks dbio Uzer
E\ﬂ} REDWTSOMSREDYWARE Mindows M dtproperties dba Syster
ED Databases emplopes dbo zer
+- 4 dbtastrade Eliobs dba User
distribution pub_info dbo ser
maszter publizhers dbo Uzer
model roypzched dbo Uzer
sdb . sales dbo zer
b Efélhwmd =] stock dbo zer |
::: . stores dbo ser
-2 Diagrams
i e spzcolumig dbi Syster
EcOmments dbi Syster
sysdepends dba Syster
spefilegroups dbo Syster
apefiles dbo Syster
azfiles] dbo Syster
-[=] Defaults apzforeignkens dbio Syster

----- 2, User Defined Data Tupes 1 =] susfulltestcataloos dbo Suster T
1 r 3 1 | 3

SQL Server Enterprise Manager

The Enterprise manager can be used to:

. Create a new database and alter database properties.

. Define new tables, views, stored procedures and user defined function within a
database.

Access tools such as the Query Analyser, SQL Profiler, and database diagrams.
Define users and roles and set permissions on database objects.

Schedul e jobs with the SQL Agent.

Set up and operate database replication.

Import and Export datawith the DTS.

Perform database administration tasks such as backups.

Monitor system activity.

Register the Server

Before we can change the structure of a database we need to register the Server on the current
workstation.

This happens automatically the first time the SQL Executive is run or an option can be
selected from the Server-Register Server menu to add additional servers.

© REDWARE 1996,2001. 13

SQL Server 2000 Handbook

Reqistered SAL Server Properties
General ; |
=
g Server. REDMTSO001AREDWARE _:j J
e ot s s S B A

" Use Windows authentication

&+ Use SOL Server authentication

Loain M amme; ;sa

Password: ;

[always prompt for lagin name and passward

Options
Server Group: ;*‘:ﬁ SOL Server Group :j ____‘j

_ilg:l ¥ Display SAL Server state in console

¥ Show system databaszes and system objects

¥ Automatically start SAL Server when connecting

0k, 1 Cancel Help

Registering a Server

There may be several separate SQL Server installations
running on the same machine.

SQL Query Analyser

The SQL Query Analyser is available from the TOOLS.. menu of the Enterprise Manager.
The user must log onto the required server and specify the required database using the
Database combo at the top of the window. The user can then type in a SQL Server statement
in the Query window and press the Execute button to see the results interactively.

The Query Analyser can be used to run any command that SQL Server understands as well as
standard SQL queries. Simply and type in the required Transact-SQL commands and press
the Green GO triangle icon to run the query and view the results. Note that there are two pages

for results, one for results sets returned and the other for messages.

Press SHIFT+F1 on any SQL keyword to launch SQL
Books Online with the required information displayed.

© REDWARE 1996,2001. 14

SQL Server 2000 Handbook

SQL Query Analyser

&" Query - REDNTSD01A\REDWARE _pubs_REDNTS001\Administrator - Untitled1=

|»

select * from authorsl

4| i.t.jw

|au_id %au_lname Eau_fname Ephone Eaddress Ecity Est,at,e z__t

[172-32-1176 White Johnson 408 496-7223 10932 Bigge Rd. Henlo Park A Qm
13-46-8915 Green Marjorie 415 986-7020 309 63rd St. #411 Oakland A =)
38-95-7766 Carson Cheryl 415 5453-7723 589 Darwin Ln. Berkeley Ch =
E7-41-2394 0! Leary MNichael 405 Z86-2428 22 Cleveland Av. #14 3an Jose Ch 7
T4-50-9391 3traight Dean 415 §34-2919 5420 College hwv. Oakland CA =)

6i |341-22-1752 Smith Meander 913 §43-046Z2 10 Mississippi Dr. Lawrence ES j;j
1 +

" O s [E Messages]

|Buery batch completed. |[REDNTSO001SREDWARE [8.0) [REDNTS001\Administrater (52] [pubs | 0200 [23raws [Ln 1, Col 22

Transact SQL commands can also be placed in a batch
text file with a *.SQL suffix and executed from the OSQL
window by selecting the File-Open menu and then
executing the query. A batch file may have several sets of
QL statements executed with a“ GO” command.

OSQL

OSQL isacommand line utility which interacts with the database server from the DOS
command prompt. It can be used to run jobs on the server from awindows standard batch
file.

The following example logs onto the server as system administrator to query the authors table
in the pubs database. The OSQL window is nhormally used to run a stored procedure.

ommand Frompt - osql -Usa

Microsoft(R>» Windows MNT{TH>
(C» Copyright 1985-1996 HMicrosoft Corp.

C:srosgl —Usa
saword:
1> use pubs
2> zselect * from authors
3> go_

© REDWARE 1996,2001. 15

SQL Server 2000 Handbook

SQL Syntax

SQL (Structured Query Language) has four main commands for manipulating data:

SELECT existing data from one or more tables.
INSERT anew record into atable.

DELETE one or more records from atable.
UPDATE existing recordsin atable.

This section explains these commands with particular reference to the flexibility of the
SELECT command. The Query Analyser available from the TOOL S menu of the SQL
Executive should be used to run the examples against the PUBS database.

pubs

The pubs database isinstalled together with SQL Server and is used in most of the examples
in this book. This small database contains data referring to book publishers and the titles they
publish alongside details of the authors that write the titles and the stores that sell them.

TABLE PRIMARY KEY | DESCRIPTION

AUTHORS AU ID AUTHOR name and address details.

DISCOUNTS STOR ID Discounts for each STORE.

EMPLOYEE EMP_ID EMPLOY EE detail with alink to the JOB

description and the PUBLISHER employer.

JOBS JOB_ID JOB Descriptions

PUBLISHERS PUB_ID PUBLISHER name and address detail.

PUB INFO PUB ID Image and Text information on the PUBLISHER.

ROY SCHED TITLE ID Royalty information for each TITLE.

SALES STOR_ID Detail record of the quantity ordered of each
TITLE_ID TITLE by a STORE.
ORD_NUM

STORE STOR _ID STORE name and address.

TITLE TITLE ID Information on the Book TITLE.

TITLEAUTHOR | AU_ID Royalty percentage for each AUTHOR involved in
TITLE ID aTITLE.

A SQL batch program called INSTPUBS. QL isinstalled
with SQL Server to allow the reinstallation of a fresh
PUBS database for training purposes. Please ask your
system manager to install a new PUBS database if
required.

SELECT Statement

The SQL SELECT statement is used to select a set of data from existing tablesin the
database. The syntax of the command is designed to define a set of data which includes the
fields (columns) and the set of records (rows) which should be selected.

The structure of the command is as follows:

SELECT [ALL | DISTINCT]

[TOP n [PERCENT]
select list

[INTO [new table name]]

[FROM {table name | view name}[(optimizer hints)] [,..

[WITH TIES]]

.n 11

© REDWARE 1996,2001.

16

SQL Server 2000 Handbook

[WHERE clausel
[GROUP BY [ALL] expression [,...n] [WITH {CUBE | ROLLUP}]]
[HAVING clause]
[ORDER BY clause]
[COMPUTE clause]
[FOR XML [AUTO | RAW | EXPLICIT]
Field List

The select list isthe list of fields or expressions that are required in the selected table. These
correspond to the fields in the result set:

SELECT au fname, au_ lname FROM authors

The asterisk can also be used to select all fields from atable.

SELECT * FROM authors

An dlias can be given to the field name to rename the field in the result table:

SELECT au_ lname AS surname, au_ fname AS firstname FROM authors
Expressions can also be specified for afield expression:

SELECT au lname + au fname AS fullname FROM authors

Expressions can be used in the select list:

SELECT s.*, t.price, gty * price AS gtyprice
FROM sales s
INNER JOIN titles t ON s.title id = t.title id

Scalar functions can be applied to fields or expressions for more complex queries:
SELECT UPPER (au_lname), CAST(address + ',' + city + ',' +
state + space(l) + zip as varchar (45))
FROM authors
WHERE Clause

The WHERE clause is used to narrow down the rows selected for the result table.

SELECT * FROM authors WHERE au lname = 'White'
AND and OR and NOT can be used:
SELECT * FROM authors

WHERE (state = 'CA' or state = 'UT!')

AND (NOT contract = 1)
The IN clause can be used instead of OR:

SELECT * FROM authors
WHERE state IN ('CA','UT')

The BETWEEN syntax can be used also to select between given values:

SELECT * FROM titles WHERE price BEWTEEN 10.00 AND 29.00
NULL values can be identified in a WHERE clause:

SELECT * FROM stores WHERE zip IS NULL

The TOP n clause can be used to limit the number of
recordsreturned from a SELECT command.

© REDWARE 1996,2001. 17

SQL Server 2000 Handbook

Wild Cards

Wild cards can be used in selection criteria, for example to select any AUTHORS containing
the letter 'a in the surname:

SELECT * FROM authors WHERE au_ lname LIKE '%A%*'

The LIKE syntax allows awide variety of pattern matching templates. The above example
utilises the % character as awild card symbolising any sequence of characters. Angle brackets
are used to define arange of characters. The following example to picks out book titles with
an identifier beginning with a character in the range B to M:

SELECT * FROM titles WHERE title id LIKE ' [B-M]%'

The underscore character indicates any single character, # any single digit, angle brackets
picks any single character within the brackets, and [*1 will pick any character not within the
angle brackets. This example selects Titles which do not have P or M asthe first letter of the
identifier and have 1 as the third character:

SELECT * FROM titles
WHERE title id LIKE '["PM] 1%

An escape character can be defined to allow one of the wild cardsto be used as aliteral in the
expression. This example finds any occurrence of the % character in the PAY TERM S field of
the STORES table:

SELECT * from sales
WHERE payterms LIKE '%\%%' ESCAPE '\’

QL Server is often configured not to be case sensitive.
You may need to check this option or use expressions of

the form WHERE UPPER (au lname) = 'SMITH'.
FROM Clause
The FROM clause specifies which tables are involved in the SELECT statement. The clauseis
mandatory:

SELECT * FROM authors

If more than one table is required in the query then they may be separated by commas:

SELECT * FROM titleauthor, authors, titles
WHERE titleauthor.au id = authors.au id AND
titleauthor.title id = titles.title id

The tables may be assigned an alias if required to shorten or provide an aternative namein the
Statement:

SELECT * FROM titleauthor ta, authors a, titles t
WHERE ta.au id = a.au id AND
ta.title id = t.title id

The alias name also allows for arecursive query that uses the same table twice to show an
employees manager for example:

SELECT employee.surname, manager.surname ;
FROM employee, employee manager ;
WHERE employee.manager = manager.id

SQL Server uses afully qualified name to identify atable. There are four parts to the fully
qualified name: server.database.owner.table. The FROM clause can specify a
table that islocated in another database or even another table:

USE northwind

© REDWARE 1996,2001. 18

SQL Server 2000 Handbook

SELECT * FROM pubs.dbo.authors

ORDER BY
The ORDER BY clause allows for aresult table to be ordered in any desired sequence:
SELECT * FROM authors ORDER BY au lname, au fname

The order sequence may also refer to the output fields in the result table using a number
indicating the sequence of the field in the select list:

SELECT au lname, au_ fname FROM authors ORDER BY 2,1

The DESC keyword may be used to reverse the sort order of a column in the ORDER part of
the SELECT statement:

SELECT title, ytd sales, type as category
FROM titles
WHERE type = 'business'
ORDER BY 2 DESC

Natural Join

WHERE clauses are often used for joining tables together using the primary and foreign keys.
Relational databases allow for any two tables to be joined together with an expression in the
first table matching any expression in the second table as long as the width and data type of
the expression isidentical.

Joins allow considerable flexibility to the programmer in joining tables together although,
nearly always, the programmer will want to join one table to another using the foreign and
primary keys.

SELECT * FROM titleauthor ta, authors a, titles t
WHERE ta.au id = a.au id AND
ta.title id = t.title_ id

The more modern syntax for a natural join isto use the INNER JOIN syntax as follows:

SELECT * FROM titleauthor ta
INNER JOIN authors a ON ta.au id = a.au_id
INNER JOIN titles t ON ta.title id = t.title id

Foecifying two tablesin a SELECT statement without
specifying a join condition will create a Cartesian product
of both tables. This means that a 100 record table joined
to a 200 record table with no WHERE clause will create a
20,000 record result table.

GROUP BY Clause

The GROUP BY command can be used with the aggregate functions to count up the number
of occurrences of avalue or to summate, average or perform statistical calculations on atable;

SELECT title id, SUM(gty) AS totalsales
FROM sales GROUP BY title id
SELECT title id, COUNT(*) FROM sales GROUP BY title id

The following example shows the maximum, minimum and average order level for each title
together with the total number of records for each title and a count of the number of different
stores ordering the title:

SELECT title id, COUNT(*) AS ordercount,
COUNT (stor id) AS storecount,
MAX (gty) AS maxgty,

© REDWARE 1996,2001. 19

SQL Server 2000 Handbook

MIN(gty) AS mingty,
AVG (gty) AS avgqty,
SUM(gty) AS sumgty
FROM sales

GROUP BY title id

The ALL keyword can be used to include all the groupings present in the table even if there
are no occurrences selected in the query. The aggregated fields for the additional groups are
set asNULL values:

SELECT title id, SUM(gty) AS totalsales
FROM sales
WHERE YEAR (ord date) = 1994
GROUP BY ALL title id

The CUBE and ROLLUP options on the GROUP BY command are specific to SQL Server
and add additional summary records into the selection. This can help in creating results sets
for complex management report.

Another aggregation command isthe COMPUTE BY clause and remember that the SQL
OLAP manager provides full management reporting facilities.
HAVING Clause

The WHERE clause filters the rows that are used in the query. The HAVING clause operates
on aquery that employs a GROUP BY clause but only after the grouping has been performed.

This allows the summary records to be selected on the basis of their aggregated values. The
procedure is similar to performing a second WHERE selection on the final results table.

The following statement selects titles that have sold more than 50 copies:

SELECT title id, COUNT(*) AS ordcount,
FROM sales
GROUP BY ti tle_id
HAVING ordcount > 50

DISTINCT

The DISTINCT clause is not often used but may be used to prevent duplicate rows from
appearing in the results table.

The following command creates a results table with one record for each Title Type in the
TITLES table:

SELECT DISTINCT titles.type FROM titles

A similar result may be obtained with the GROUP BY
clause.

Inner (Natural) Join

A natural join isthe operation that joins tables together using a where clause or the more
modern INNER JOIN syntax. The following statement will create a view that joins the
TITLES and SALES tables:

SELECT t.title id, t.title, SUM(s.qgty) AS totalgty
FROM titles t
INNER JOIN sales s ON t.title id = s.title id
GROUP BY t.title id, t.title

© REDWARE 1996,2001. 20

SQL Server 2000 Handbook

A natural, or inner, Join discussed above will only display records that qualify the join
condition and that occur in both tables. A title that has no sales will not be included in the
view.

Outer Join

An outer join allows for records to be displayed from either table even if thereis no
corresponding record on one or other side of the join. The Outer Join may be aleft or right
outer join depending on whether all the recordsin the first or the second table are required. A
full outer join will include all records from both tables.

The syntax for aleft outer join between the TITLES and the SALEStables allows all TITLES
to be displayed:

SELECT t.title id, t.title, SUM(s.qgty) AS totalgty
FROM titles t
LEFT OUTER JOIN sales s ON t.title id = s.title_ id
GROUP BY t.title id, t.title

Missing values where there are no corresponding SALES records for a Title are represented as

NULL values.
A LEFT outer join includes all records from the table
mentioned in the FROM clause, the RIGHT outer join
includes all records from the joined table, and a FULL
outer join includes all the records from both tables.
Sub Queries

Subqueries can be useful in creating views with complex selection criteria. The following
example could be expressed as anormal JOIN and GROUP BY but is more clearly expressed
asfollows:

SELECT * FROM titles WHERE title id IN
(SELECT title id from sales
GROUP BY title id
HAVING SUM(gty)> 25)

Subselections are particularly useful when working with views or temporary sets of dataand
can be used to check if records arein or not in another table

SELECT * FROM titles t
WHERE title id NOT IN
(SELECT title id FROM sales s
WHERE t.title id = s.title id)

This same query could use the less specific NOT EXISTS clause:

SELECT * FROM titles t
WHERE NOT EXISTS
(SELECT title id FROM sales s
WHERE t.title id = s.title id)

A join may always be expressed as a subquery

UNION

The UNION command can be used to create a single view from two tables with a similar
structure. The following example creates a single table from the authors and empl oyee tables:

SELECT

© REDWARE 1996,2001. 21

SQL Server 2000 Handbook

a.au_id AS cid, a.au lname AS lastname, a.au fname AS fname
FROM authors a

UNION

(SELECT e.emp id AS cid, e.fname AS firstname,

e.lname AS lastname FROM employee e)

Duplicates are removed from the resulting query unless the UNION ALL keyword is
specified.

Care needs to be taken where the table structures are not
identical The CAST or CONVERT scalar functions can be
used to change a data type in a SELECT statement.

FOR XML mode [, XMLDATA] [, ELEMENTS][, BINARY BASE64]

SQL Server 2000 allows for rapid creation of XML from standard select statements. Thisis
useful in creating components that use XML to communicate information:

SELECT * FROM authors
FOR XML AUTO

The modes are as follows:

. AUTO defines an element with the same name as the table for each record and
represents fields at attributes.

. RAW uses an element names <row> instead of the e ement named after the table.

. EXPLICIT alows precise definition of the XML tree.

XMLDATA specifies full datatype information using an external schema.

The ELEMENTS clause is used together with AUTO to include the columns of the select
statement as sub-elements instead of attributesin the XML.

SELECT * FROM authors FOR XML AUTO, XMLDATA, ELEMENTS

SQL Server 2000 has additional commands that allow a
stored procedure to read an XML file (OPENXML).

SELECT .. INTO

A new table can be created with a SELECT INTO command provided that the user has
CREATE TABLE permissions on the database.

SELECT *
INTO contractauthor
FROM authors
WHERE contract =1

INSERT Statement

The INSERT statement all ows new records to be added into a table:

INSERT [INTO]
{table name | view name} [(column list)]
{DEFAULT VALUES | values list | select statement}

The INSERT statement requires that the val ues satisfy any validation constraints specified on
the table otherwise the transaction will fail.

INSERT INTO authors
(au_id, au lname, au fname, contract)

© REDWARE 1996,2001. 22

SQL Server 2000 Handbook

VALUES ("999-99-9001", "Crook", "Stamati", 1)

There are constraints defined on the Authors table that
will prevent a new record from being added if the
identifier is not unique or if the firstname, lastname, or

contract field values are not specified.

The INSERT command may also be used in combination with a SELECT statement to add
records into atable:

INSERT INTO bestseller
(title_id, gty)
SELECT title id, SUM(gty) FROM sales s
GROUP BY title id
HAVING SUM(qgty) > 25

UPDATE Statement

The UPDATE statement allows values in existing records to be changed:

UPDATE {table name | view name}
SET [{table name | view name}]
{column 1list
| variable list
| variable and column list}
[, {column list2
| variable list2
| variable and column list2}
[, {column 1listN
| variable listN
| variable and column listN}]]

[WHERE clausel]
The Update clause can be used to update any field and usually involves a WHERE clause.
Take care to specify the WHERE clause carefully or al the records will be updated:

UPDATE authors

SET au lname = 'Crank',
au fname = 'Stanley!’
WHERE au lname = 'Crook!'

The WHERE clause is often used in conjunction with the
Primary Key expression to update a single record in the

table.

The UPDATE command can also set values into a table by making calculations using data
from another table:

UPDATE sales
SET gtyprice = gty * (SELECT price
FROM titles t WHERE sales.title id = t.title id)

DELETE Statement
The DELETE statement allows for deletion of table records using a WHERE clause to specify
the records for deletion:
DELETE [FROM] {table name | view name}

© REDWARE 1996,2001. 23

SQL Server 2000 Handbook

[WHERE clause]

The DELETE statement must satisfy any referential integrity constraints set up in the database
before records are deleted:

DELETE authors
WHERE au lname = 'Crook!'

The TRUNCATE TABLE authors command could be
used to delete all the recordsin the table. Take care to
backup after such a command because a Truncated Delete
is not logged.

© REDWARE 1996,2001. 24

SQL Server 2000 Handbook

5. Database Definition

This section introduces the Enterprise Manager as a means of defining a database and its
congtituent tables. The following procedures are covered in detail:

Create a new database and set database parameters.

Create a Table and constituent fields.

Define additional properties on afield.

Add default and check constraints to afield.

Define a primary key.

Define aforeign key and set up referential integrity constraints between tables.
Create a user defined data type.

Generate a SQL Script for the database objects.

Enterprise Manager

The Enterprise manager can be used to manage a number of SQL servers throughout the
enterprise. Most options are made available by navigating the tree structure of the Enterprise
Manager and right clicking on the desired option.

Enterprise Manager

':m SOL Server Enterprize Manager - [Conzole Root\Microzoft SOL Servers\SOL Server Group... =] E3

Jnﬁ] LConzole “Window Help % |_|_|- & El
|J Action Wiew Tools |J o mp | | | @ |J %—lﬁ B E‘/} T m Ea |
Tree I pubz 11 ltems
[Conzole oot &)
El Microzoft SOL Servers = % EFI:I-..' ﬁ
Elﬁ SOL Server Group Diagramsz Tables Wigmg Stored
EH} REDMTS001AREDWARE [windows M Procedures

L——_I{:l D atabazes

[+ dbredware @ |:| Ij
dbtastrade
distibiutian |lzers Roles Rules Defauls
fred

ragker —
€ B

msdb) Jzer Defined User Defined Full-Text
Marthwind [ata Types Functions Catalogs
pubs

-25 Diagrams

. P . B

Each installation of SQL Server has several system databases:

. MASTER contains many configuration details of the server including details of the
schema for each database. It isimportant that this database is backed up whenever
changes are made to the structure of any of the databases asit is very difficult to
repair asystem if the MASTER database is missing.

. The MODEL is used as the template to create a new database.

. MSDB is used by the SQL Agent for holding details of scheduled jobs created to do
housekeeping tasks such as backing up databases.

© REDWARE 1996,2001. 25

SQL Server 2000 Handbook

. TEMPDB is used for temporary storage during everyday use of the database. This
includes temporary tables created in stored procedures and other working tables.

If you are working with large amounts of data you will
want to increase the size of the TEMPDB database.

Create a Database

SQL Server isusually installed on aNT Server machine which runs SQL Server programs as
anetwork service. The Client workstation makes a request to the SQL Server service running
onthe NT Server which performs the database retrieval before returning the required datato
the workstation.

The database files are usually stored on the server machine and a database needs to be set up
to hold the physical files for each database application. Thistask is often performed by the
database administrator so that a new empty database is provided for the programmer to
configure.

Each database has two physical files. One contains the data and the other contains the log.
Datais written to the database and a record of each transaction is made in the log file. If the
database file becomes corrupted, it can be restored from a backup and the transaction log
rolled forward to restore the database.

It isrecommended that the Database and the Log are
stored on separate physical devices. This allows the
database to be recreated from a backup and the
transaction log if the physical disk containing the
database filesis corrupted.

A new database is created by right clicking on the databases option in the tree view of the
enterprise manager and selecting the New Database.. option (also available from the Action
menu option).

© REDWARE 1996,2001. 26

SQL Server 2000 Handbook

Create a New Database

:m SOL Server Enterprise Manager - [Conzole BootAMicrosoft SOL Servers\50

Jﬁ'}] Conzole “Window Help

chtiun Yiew Tools J<}=-P||><|g'|@ J%Ifé N

Tree I SOL Server Group 1 Item
(7] Conzale Roat %
REDNTSO0...
El& REDMTSO0TAREDWARE [wWindows NT] | [windows NT)

Mew Databaze. .

Al Tazks 3

I ew Window from Here

R efrezh

Help
Marthand
pubz
4 tempdb

Provide an appropriate size for the database and preferably define a maximum size. Allow the
database to grow by a reasonable amount each time so the system is not constantly redefining
the database size. Place the transaction log on a separate physical disk dive if possible. The
log isusually 10-15% of database size.

© REDWARE 1996,2001. 27

SQL Server 2000 Handbook

Create a new database
Database Properties - dbredware

General Data Files ; Tranzaction Ll:ugi

[atabaze files

File Mame

(Iritial size [ME] [Filegroup
dbredware_Data Program Files'hicroz... 1 FRIMARY

Delete !

File properties

¥ Automatically grow file ——————

i~ File growth

' |n megabytes: 1'[ﬁ
* By percent; 110 ﬂ

— Masimum file size

% Unresticted file growth

™ Restict file growth [MB] i j

k. 1 Cancel Help

The CREATE DATABASE command can also be used to
create a new database.

It is advisable to backup the MASTER database each time
changes are made to any database on the server.

Create a Table

Tables are created by expanding the tree view for the database and right clicking on the
TABLE treeto select the NEW TABLE option.

© REDWARE 1996,2001. 28

SQL Server 2000 Handbook

Create a Table with SQL Enterprise Manager

:] nﬁ] Conzole “Window Help I;lil = :
HE % sBaE | &8 <50
ColumnMame | DataType [Length | allow Mulls =
3 i int 4
[|Forename warchar 40 i
: SUFMAne warchar 40
— =
Caolummz
Description
Default Yalue
Precision 10
Scale]
Idenkity Yes
Identity Seed 1
Identity Increment 1
Is RowiEuid 3]a]
Forrmula
Collation
| | |
Data Types
SQL Sever has predefined data types one of which must be used for each field:
. Integer: int, smallint, tinyint, bigint.
o Exact Numeric: decimal, numeric.
. Approximate Numeric: float, real.
. Money: money, smallmoney.
. Character data: char(n), varchar(n).
. Binary data binary(n), varbinary(n).
. Date and time: datetime, smalldatetime.
. Text and Image text, image.
. Other: bit, timestamp, sql_variant, user defined.
. Unicode: nchar(n). nvarchar(n), ntext.
. Identifier uniqueidentifier

L Server field types are copied from the MODEL
database each time a new database is created and may be
added to by defining user defined data types.

Selection of the correct data typeis very important and requirements will vary according to
the business requirements of the application:

© REDWARE 1996,2001. 29

SQL Server 2000 Handbook

. A market research database may have very large amounts of data and numeric field
types should be selected with a view to the storage requirements. A SMALLINT
integer field will need less space than a FLOAT field for example. Be careful when
using TINYINT however as the maximum allowable value is 255.

. Numeric accuracy isimportant in financia applications and allowance should be
given for the requirement to store fractions as decimals particularly for stock market
applications. Some fractions may require many decimal placesto be stored
accurately. DECIMAL is often the most precise data type for numerical values.

. The MONEY datatypeis normally the best for storing currency values

. The VARCHAR datatype allows character data of variable length to be stored at the
cost of an extra bit for each value to store the width of the field. VARCHAR is not
appropriate for very short field lengths or for fields where the width isrelatively
constant throughout the table (a single byteis used to store the length of each value).

. TEXT and IMAGE fields store datain 2K chucks by default to a maximum of 8,000
bytes. It is recommended that Null values are permitted if there are a large number of
empty valuesin the table. In some applications it may be more efficient to store the
data as external files and use network protocols to access them.

. Unicode data types use two bytes for each character and allow a variety of
international charactersto be stored.

Nulls and Defaults

Properties can be defined against each field. It is recommended that the ALLOW NULLS
option is deactivated for each field to prevent problems when inserting records. A default
value for each field should be defined in the properties for the field as shown below.

Field Properties

Columnhz

Description
Default Yalue
Precision

Scale

Idenkiky

Identity Seed
Identity Increment
15 RowiEuid Mo

Farrmula

Collation <database defaulk =

=
-—

=00

Other options allow the precise format of numeric fields to be set and unique identifier
functions to be set on candidate primary leys for the table.

FORMULA isused to set up acalculated field and COLLATION is used to set a specific sort
order on the field. These options are rarely used.

Table Ownership

Tables are referred to with afour part qualifier:

SELECT * FROM servername.database.owner.table

The qualifiers can normally be omitted depending on the context. The following code ensures
that the context is the PUBS database and so the database need not be qualified:

USE pubs
SELECT * FROM authors

Selecting information from a different database required that at least the database is qualified:

USE master
SELECT * FROM pubs..authors

© REDWARE 1996,2001. 30

SQL Server 2000 Handbook

Tables can be created by various database users and ownership is recorded for the table. This
could lead to a situation where there are two tables with the same name but with different
owners. The owner qualifier would need to be specified each time the tableis referenced and

this could lead to considerable confusion.

A system stored procedure can be used to change the ownership of an object as follows:

EXECUTE sp_ changeobjectowner authors, dbo

It isrecommended that all objectsin a database are
owned by the database owner: dbo.

Field Properties

Fields are defined by selecting a Table and right-clicking on the DESIGN TABLE..option to

bring up the DESIGN TABLE window.

Table Designer

':m 50QL Server Enterprise Manager - [2-Design Table "autho. .. [B[=] B3

J[E'j] Conzole Window Help

=181 x]

Her |6 2R 7 OS5 <5 E
Column Mame | Daka Type |Length | Allaw Mulls |-
% au_id id (varchar) 11 |
Em au_|name wvarchar 40
[au_frname wvarchar 20
T phone char 1z
[|address wvarchar 40 W
[ciky wvarchar 20 W
skake char z
o i b c "v': LI
Columnz |
Description |
Default Yalue [LINEMOWMN
Frecision (]
Srale i}
Tdentiky Mo
Identity Seed
Tdentity Increment
Is RawwiEwid Mo
Formula
Collation <database defaulk =

Thereisa maximum of 1,024 fields per table with SQL
2000 and a maximum of 8,060 bytes per record.

© REDWARE 1996,2001.

31

SQL Server 2000 Handbook

New fields are added by entering the new field definition at the bottom of the window. The
name of existing fields can be changed and their widths altered by changing the appropriate
values. Be careful when shrinking the field size as data may be lost.

Defaults can be specified for afield by entering a constant in the column for defaults against
the field. These are constant values specified for the individual field only.

Pressing the Save Table button saves any changes to the table. Definitions of keys and other
table settings can be displayed with the Advanced Features option later in this chapter.

Null Values

Relational database theory differentiates between anull value for afield and a zero value.
SQL Server can determine whether a value has never been entered against a numeric value (a
null) or whether a zero has been entered by the user.

Null values are important in relational theory but can cause problemsin application
development if not used correctly. Arithmetic and Boolean operation on Null values can yield
unexpected results.

Specifying that nulls are not allowed will fail an insert transaction that attemptsto add a
record without a specific value entered against particular fields. Thisis useful for forcing entry
of numeric values, foreign key or lookup fields, and status flags.

Null fields often cause confusion and it isa good idea to
specify fields not to allow nulls and to specify a default
value.

Default Constraints

Defaults may be defined against afield to automatically enter a value when a new record is
inserted into the table if the application has not entered avalue.

Defaults can be useful with fields that are defined as NOT NULL as SQL Server will supply a
value for the field if not specified by the application.

Defaults may be set by typing avaluein against the DEFAULT field property when defining a
field with the DESIGN TABLE window. The default must be specified as a constant value.

Specifying a Default Value

Columnz
Descripkion
Default Yalue (LMK
Precision (]
Scale 0
Tdentiky Mo
Identity Seed
Identity Increment
Is RawniEuid Mo
Formula
Collation «<database defaulk=

Defining a default value with the DESIGN TABLE window will automatically create a default
congtraint on the table. A field default constraint can aso be added to (or dropped from) a
table with a SQL data manipulation command as follows:

© REDWARE 1996,2001. 32

SQL Server 2000 Handbook

ALTER TABLE [authors] WITH NOCHECK ADD

CONSTRAINT [DF authors state] DEFAULT ('CA') FOR [statel]

Check Constraints

Check Consgtraints allow the definition of a simple piece of logic to check the valuesto be
entered in afield. The AUTHORS table could be altered to prevent further entry of any
authors from Texas by setting a constraint which prevented the state field from being set to

TX.

Check constraints may be entered with the SQL Enterprise Manager by selecting the
appropriate Table object and rightclicking to edit the table. Pressing the ADVANCED
FEATURES push button will bring up a Page which allows various constraints to be set. The

Check Constraints page allows for simple checks to be made on the data.

Specifying a Check Constraint for a Table

Properties

Tal:ules; Helatiunshipsi Indexes/Keys Check Constraints i

Table name: authors

Selected constraint: ;CK_authu:urs

e

Delete i

Constraink narne: ;CK_authn:-rs_state

Conskraink exprassion:

state <= 'TH'

[check existing data on creation
W Enforce constraint For replication
¥ Enforce constraint For INSERTs and UPDATEs

w]

| Cloze i

Help

SQL Server will not allow a value to be entered or modified that conflicts with the check
constraint and will generate an appropriate error message if an attempt is made to violate the

constraint:

© REDWARE 1996,2001. 33

SQL Server 2000 Handbook

Error Generated by SQL Server when the Constraint is violated

¢ Microzoft Yisual FoxPro |

& Connectivity error: [Microsoft[ODBC SAL Server Driver][SEL

Server]UPDATE statement conflicted with COLLIMM CHECE,
congtraint 'CK_authorz_state’. The conflict occured in databaze
‘pubs’, table 'authors’, column 'state’,

Bevert Help

Constraints are new with SQL Server 6.0 and replace the
previous notion of defining Defaults that are bound to
fields. They are compatible with the latest SQL ALTER
TABLE syntax.

Constraints can also be added with a SQL script by utilising the ALTER TABLE command:

ALTER TABLE authors
ADD CONSTRAINT CK authors city CHECK(city<>'gotham')

Create a Primary Key

Primary keys can be created easily from the Table design window by using selecting the
required field and using the SET PRIMARY KEY button represented by the key shape at the
top of the table design window. Multiple fields may be selected to create a composite Primary
Key.

Set the Primary Key in the Table Design Window

Tﬂl SQL Server Enterprize Manager - [2:Design Table "person’ in*

J[%] LConzole “Window Help

HE T 28 R eS8 <5 H

Column Mame | DatqI S et primary keyfh Allaw Mulls
id ink

Forenfbme varchar 40
sUrname varchar 40

| %]
id

SQL Server automatically defines the required primary key index. The penultimate button on
the right of the Table Designer toolbar allows the user to MANAGE INDEXES/KEY S.. and
can be used to refine the primary key definition.

Fields that allow Nulls may not be specified as Primary
Keys.

Identity Columns

Field properties can be used to define Integer fields as an Identity column which is
automatically incremented each time a new record is added to create a unique value suitable as
aprimary key on atable. Aninitial seed value and an increment can also be set.

© REDWARE 1996,2001. 34

SQL Server 2000 Handbook

Specifying Identity Column Properties

Columnz
Descripkion
Default Yalue
Precision 10
Srale]
Identity Yes
Identity Seed 1000
Identity Increment 1
Is RowiEuid Mo
Formula
Collation

Identity columns are typically used as primary keys and have the advantage of being small in
size and therefore fast for SQL Server to use when joining tables.

Identity columns also provide a degree of data independence and can be a better design option
than alternate candidate keys. An employee table, for example, has both the Staff Identifier
and the National Insurance Number of the person as candidate keys. However the person
cannot be added into the table until a Staff Identifier has been allocated causing problemsin
entering data before the person actually starts work. Similarly a National Insurance Number
may not be immediately available or may change, forcing key values to be cascaded down any
dependent tables. An independent identity column is a better primary key than either of the
obvious candidate keys.

There are some useful system functions for obtaining information about identity columns.,

. The @@IDENTITY system variable will indicate the value of the primary key of the
previously inserted record.
. IDENT_CURRENT ('person’) will return the latest identity column value for the

person table. Similarly IDENT_SEED and IDENT_INCR will return the seed and
increment for the required table.

. DBCC CHECKIDENT(('person’) will check that the values in the identity column are
correctly defined for the table.
. SET IDENTITY _INSERT OFF isrequired when inserting records where the value of

the identity column is already known.

Only one identity column is allowed for each table and can be specified in a select statement
asfollows:

SELECT IDENTITYCOL, surname FROM person

Unique Identifiers

There are some problems with Identity Column keys particularly if atable is distributed over
several servers and needs to be replicated. The UNIQUEIDENTIFIER data type has similar
properties but is a 16 character globally unique identifier that is automatically defined by
setting the default value to NEWID() in the field properties.

Unique I dentifiers can be represented with the field name or the ROWGUIDCOL keyword in
a SELECT command:

SELECT ROWGUIDCOL, surname FROM person

UNIQUEIDENTIFIER fields are larger than integer fields
and care should be taken using them on very large tables.

© REDWARE 1996,2001. 35

SQL Server 2000 Handbook

Primary Key Constraint

Anindex and primary key constraint is automatically created when a primary key is defined
using the Table Designer. The MANAGE INDEXES/KEY S.. button on the right of the Table
Designer alows all indexes, including primary keys, to be defined in more detail.

The Primary Key is comprised of one or more fields that do not alow null values. Composite
Keys can be defined by selecting a second column for the Primary Key. Select the Clustered
option if the table isto be physically ordered in the sequence of the Primary Key.

Defining a Primary Key with the Manage Indexes/Keys..Window

Properties |
Tabhsl R elationzhips |ﬂdEHESfKEPS| Eheck.EDnsnmnml
Table name: | authors |
Selected index: ILIPKCL_auiu:Iinl:I j
Type: Primary: ke | e | Delete |
Index name; IUPKCL_auiu:Iinu:I
Column name | Srder | =
au_id = | Ascending
il
Index Flearoums IF'RIMF'.R'-"' j
W Greate UNIGLNE Fill Factar:
£% | Conistraint ID o
-
Trinl e I lonore duplicate bey e
IV Create as CLUSTERED
[Do ot automaticzally recompute statistics

| Cloze I Help

Primary Key constraints can also be defined using SQL Server data manipulation language
which automatically creates the appropriate index:

ALTER TABLE person
ADD CONSTRAINT PK person
PRIMARY KEY CLUSTED (id)

Foreign Keys and Referential Integrity

Foreign Keys are the other half of arelationship between tables and link a child tableto a
parent table. The Foreign Key value should match directly to the value of the Primary Key.

Foreign Keys can be defined in SQL Server to automatically maintain the referential integrity
of thetable. Select the MANAGE RELATIONSHIPS option in the DESIGN TABLE
window to define a Foreign Key.

© REDWARE 1996,2001. 36

SQL Server 2000 Handbook

Tih' 2:Design Table "car’ in "dbredware” on 'REDNTS001ARED'WARE "

ColumnMName | DataType [Length| Allow nled

N o —e) 1Manage Helatinnships...|
: make char 20 E
i model char 20
| [registratian char 10
e int 4 W

Thefields for the Primary Key Table and the Foreign Key Table are entered in the respective
columns on the RELATIONSHIPS page of the TABLE window to create the rel ationship.

Enforcing the relationship for INSERTS and UPDATES will create the referential integrity
constraint so that no OWNER of a CAR can be entered without a corresponding record in the
PERSON table.

Defining a Foreign Key

Properties 1

Tables Relationships i Inde:-:ess’Keysi Checl Eunstraintsi

Table name: car
Selected relationship: ico FK_car_person :j
Mew Delete i
Relationship name: ;FK_CEH’J:IEFSDI'I
Primary key table Foreign kew table
person
id x| owner

[" cCheck existing data on creation

¥ Enforce relationship For replication

W Enforce relationship for INSERTs and URDATES
[Caszcade Update Related Fields
[Cascade Delete Related Records

| Cloze i Help

The OWNER field in this example allows NULL values so
a CAR can be defined without an OWNER by leaving the
valueasa NULL.

© REDWARE 1996,2001. 37

SQL Server 2000 Handbook

A cascading delete will automatically delete linked recordsin the Foreign table if the record in
the Primary table is deleted. Similarly, a cascade update allows a key value to be changed in
both the Primary and Foreign tables if the value of the identifier changes.

Triggersare no longer required to perform cascading
deletes

Foreign Key constraints can also be added using SQL.:

ALTER TABLE car ADD
CONSTRAINT FK car person FOREIGN KEY
(owner) REFERENCES person (id)
ON DELETE CASCADE

User Defined Data Types

SQL Server allows the definition of user defined data types within a database. These can be
useful to prevent inconsistencies in large database schemas where similar fields occur many
times. A user defined datatype might be defined for telephone and fax numbers, for example,
to make sure all occurances where of the same width throughout the database.

The outline view of the SQL Enterprise Manager can be used to define a user defined data
type. The datatype is then available for use when defining fields with the Table Designer.

User Defined Data Type Window

Uszer-Defined Data Type Properties - REDHTWO001 |
General |
g Marme; Iudtphu:une
D ata type: I\-'an:har j

Length: |1 q

Al HLILLz |-
Bule: I [mone] j

Drefaulk; I [mone] j

wbene [zed. |
k. I Cancel | Help |

Alternatively, system stored procedures can be used to define or drop user defined types from
the database:

EXECUTE sp_ addtype udtphone varchar(20)
EXECUTE sp droptype udtphone
EXECUTE sp help udtphone

© REDWARE 1996,2001. 38

SQL Server 2000 Handbook

User defined datatypes may be defined in the MODEL
database and are then automatically copied into each new
database.

Defaults and Rules

These features were in popular usein earlier versions of SQL Server but have now been
replaced with the use of constraints that have the advantage of being ANSI compatible and
easier to define. Their use is not recommended.

Defaults

A collection of default values may be defined independently in the database and then bound to
individual fields or to a user defined data type. Unfortunately, it seems that changing the value
of the default requires all the default and all bindings to be dropped and recreated. The use of
defaults has been replaced by ANSI compatible default constraints.

Rules

Simple validation rules (that reference only constant values) can also be defined in the
database and bound to user defined data types or directly onto afield. These are now replaced
with ANSI compatible check constraints.

© REDWARE 1996,2001. 39

SQL Server 2000 Handbook

6. Indexes

Unique Index Constraint

A table may have alternate candidate keys that uniquely identify each occurrencein the table.
A staff or employee table, for example, may have a Staff |dentifier and a National Insurance
number entered for all staff. Each of these fields is unique to each occurrence and creating a
unigque index constraint on the field will ensure that duplicate values do not occur.

Indexes may be defined on asingle field or a set of fields as a composite key which may be
useful for optimising queries or for sorting data for areport or batch processing tasks.

If several fields are often involved in a query selection is
good for performance to create a composite key. If some
selections only use one or two of the fields then they
should be defined as the first columns of the index
otherwise the index will not be selected by the query
optimiser.

ALTER TABLE person
ADD CONSTRAINT IX person
UNIQUE NONCLUSTERED (id)

Clustered Index

A single cluster ed index may be defined on atable that physically sorts the records into the
index order. This can speed up performance on atable if sequential accessto a set of records
is often needed in the sequence of the clustered index. Retrieval of individual recordsis not
improved by a clustered index.

Take care not to cause contention problems when creating
a clustered index. Many users entering new records
simultaneously with similar clustered index values will
cause a performance bottle-neck as they all need to access
the same part of the clustered index. This occurs
particularly with date or timestamp values or

incrementing primary keys when they are used as
clustered indexed. The situation has improved with SQL
Server 6.5 but is still not recommended.

There are more advanced options, discussed below, that can be defined against an index but
areinitially best avoided as they may result in part of atransaction failing with no indication
to the user that some records have been ignored by the database engine.

Indexes are defined with the Manage Indexes window available by rightclicking on the
required Table in the SQL Enterprise Manager and sel ecting the Indexes option. The fields for
the Table are displayed and can be moved into the Index by clicking the Add button. More
than one field can be added to create composite keys.

© REDWARE 1996,2001. 40

SQL Server 2000 Handbook

Manage Indexes Window

Manage Indexes - [LOCAL)\pubs E
Takle: aLthors [dbo) e Iaunmind j Rebuild. .. I
Available Columns in Takle: Calumnns in Index [Key]: Remove... |

Mame |NuII I Baze Datat'fpe| Mame INuII | Baze Datat',-'pe|
au_id varchar [11] au_lname warchar [40] Rename... |
phone char [12] e e = | au_fname varchar [20] Distribtion |
address W7 warchar [40] —
city W7 warchar [20] M Check Size... |
state W char [2]
zip W5 char [5] —Index Aftributes o
. Cloze |
caontract bt [1] ™ Unigue Keys [0 lanore Duplizate Feys
- Help |
lanareE Nl iEate Eawrs
[T Clustered . - p.
[T &llow Duplicste Rows
— Takle Size
™| Sorted|bata . —
24 rovwez in 4 KB [T Sorted Data Reory Eill Factar % ID -
—Index: Size
Actual Size (KB c 4
E=timated Min. § Awvg. § Wax. Patential Size (WB) o4 4 4
Esztimated Min. 5 Awvg. § sy, Rows per Leat : Mode AT 25 46 41 285182
Eztimated Min. § Avg. §f Max. Index B-Tree Levels 1 1 1

SQL Server indexes can be defined to ignore certain problems when inserting new records
into atable. The Ignore Duplicate Row option causes records with duplicate rows, where a
clustered index has been defined, to be ignored during a transaction without failing the whole
transaction. In this case, duplicate rows are not inserted into the table but the remaining
records are processed.

Similarly with the Ignor e Duplicate K ey option, attempts to insert a record with a duplicate
key that has been defined as a unique index, will ignore only that record and continue with the
remainder of the transaction.

The Allow Duplicate Rows option contradicts the principle of a primary key for each record
and isrequired only in unusual circumstances.

Relational database tables should theoretically always
have a unique primary key and therefore no duplicate
rows. Microsoft Access, for example, will not allow
updates on a table without a primary key.

Clustered Indexes allow for the Sorted Data checkbox to be specified so processing time is not
wasted sorting the Index. The Index is not created however if the data is not sorted correctly.

© REDWARE 1996,2001. 41

SQL Server 2000 Handbook

7. Views

SQL Views employ a SELECT statement to create a new virtual table that behavesin a
similar fashion to the real tablesin the database.

Views can be used to hide the complexity of the underlying database structure or to show a
subset of data. They are useful in presenting summary or aggregated information to users for a
Decision Support or Reporting Application. The view can be redefined if any changes are
made to the underlying table structures without affecting any of the existing management
reports.

Views are also useful in implementing security and performance requirements. A view can be
defined to allow read/write access to a subset of data to which users are otherwise denied
access.

A partitioned view allows several tables to be joined together (with the UNION command)
and processing to be spread over different databases or servers for parallel processing and
improved performance.

SQL Enterprise manager or the CREATE VIEW command is used to create views. Use the
ALTER VIEW command to change existing views that have references made to themin
stored procedures or triggers.

CREATE VIEW [<database name>.] [<owner>.]view name

[(column[,...n])]
[WITH <view attribute> [,...n]]
AS

select statement
[WITH CHECK OPTION]

The following example createsthe TITLEVIEW view by joining three tables together. The
view can be used in exactly the same manner as a normal table and will update the underlying
tables.

CREATE VIEW titleview

AS

SELECT title, au ord, au lname, price, ytd sales, pub id
FROM titleauthor
INNER JOIN authors ON authors.au id = titleauthor.au id
INNER JOIN titles ON titles.title id = titleauthor.title id

Care should be taken with the ownership of Views an the
underlying tables. In general, it is best to have the
database owner (dbo) as the owner of all views and
tables. Use the sp_changeobjectowner system stored
procedure to change owner ship.

Any standard SELECT statement can be used including complex queries with UNION,
GROUP BY, and HAVING. An ORDER BY clause however is not allowed unless used in
conjunction with the TOP clause.

Viewswith aggregate or computed fieldsin the SELECT
syntax cannot be modified.

Thesp_depends viewname and sp_helptext viewname System procedureswill
display the dependent columns and the syntax of the view respectively.

© REDWARE 1996,2001. 42

SQL Server 2000 Handbook

Indexed Views

Views that contain summary information need to retrieve the underlying information each
time they are used by the calling application. Creating an index on the View forces SQL
Server to retrieve and permanently store the index in the database vastly improving
performance.

The SCHEMABINDING option must be used on a View before indexing is permitted:

CREATE VIEW
CREATE INDEX..

Maintaining an index on a View adds an overhead and should not be used on very volatile
datathat is frequently updated. Careful design of the index can yield fruitful results as the new
Index can be used by the query optimiser in any query even if the View itself is not involved.

Check Option

Views are a great way to provide limited access to data for selected users. A View on an
Employee table may be defined without any salary details and permissions denied on the
original table to simplify security access for this sensitive data.

The CREATE VIEW syntax hasaWITH CHECK OPTION that prevents data being added or
modified within the view that cannot subsequently be retrieved from the view.

The following example creates a view that only shows authors with contracts and will not
allow an author to be added or modified without the contract field having a value of one:

CREATE VIEW authorscontracts AS
SELECT * FROM authors
WHERE contract =1
WITH CHECK OPTION

Partitioned Views

A specia case of Viewsthat UNION severa tables of identical structure is known asa
partitioned view. These tables can be local, within a single database, or distributed on several
databases, perhaps even on different servers.

The datais usually partitioned on some logical basis such asthe inclusion of a country code in
the table and a check constraint is set on each table so that the query optimiser can determine
which tablesto look at for atypical query.

The view is then created by UNIONing all the tables and an updateable partitioned View
results. The advantage of spreading each table over different databases or servers alows the
query to run in parallel on multiple processors or servers and can speed performance on very
large databases.

A partitioned view over several databases or servers, with
an index, can provide very powerful parallel processing
facilities for very large databases.

OPENROWSET

SQL Server can use OleDB/ODBC middleware to connect to external datasources directly
from the server. The following example uses an ODBC datasource defined on the server to
connect and retrieve data from a FoxPro table:

select * from openrowset('MSDASQL',

'DSN=dsnfoxtastrade’,
'select * from shippers where company name like ''U%''!')

© REDWARE 1996,2001. 43

SQL Server 2000 Handbook

The OPENROWSET command is used for ad hoc queries and is much more flexible when a
connection string is used rather than a pre-defined ODBC datasource.

Linked Servers

A linked server can be defined using the Security-Linked Servers option of the SQL Executive

or the sp_addlinkedserver System stored procedure. This defines a permanent
relationship between the SQL Server and another SQL Server or external datasource.

The following example adds a linked server, called FOXTASTRADE, to the current SQL
Server using an existing ODBC datasource:

EXECUTE sp addlinkedserver
@server="'foxtastrade',
@srvproduct="'foxpro',
@provider="'MSDASQL',
@provstr='DSN=dsnfoxtastrade'

The MSDASQL isthe generic driver to connect to ODBC
datasources. More specific drivers can be easily defined e
from the Security-Linked Servers option in the SQL
Executive.

The OPENQUERY () function can be used to execute a pass through query directly on the
linked server and return aresult:

SELECT * FROM
OPENQUERY (foxtastrade,
'select * from category where category name like ''B%''')

The sp_serveroption system stored procedure may be
required to set the default database options for the linked
server (collation sequence, etc).

Distributed queries can also be run on linked server by using the full four part object
reference:

select * from linkedserverOl.pubs.dbo.authors

Information on the database schema contained inside a
linked server can be obtained with the relevant system
stored procedure: sp_linkedservers, sp_catalogs,
sp_indexes, sp_tables ex, sp_columns_ex.

Temporary Tables

Temporary tables can be created on the server using a SQL SELECT statement. These

temporary tables can be used for reporting purposes or to perform interim cal culations as part
of abatch process.

Temporary Tables have their name prefixed with # or ## for local and global tables
respectively. Local tables are only available for the current user session or perhaps just within

the scope of a single stored procedure. Global temporary tables are available to all users of the

database and are deleted only when the last session that refersto the tableis closed.

The following command sets up a temporary table which all users can access:

© REDWARE 1996,2001. 44

SQL Server 2000 Handbook

select *
into ##contractauthor
from authors
where contract =1

The SELECT .. INTO .. syntax may also be used to create
a new permanent table provided that the SELECT
INTO/BULKCOPY database option is set to True:

exec sp_dboption 'pubs, 'select into', TRUE

© REDWARE 1996,2001. 45

SQL Server 2000 Handbook

8. Stored Procedures

SQL Server allows the programmer to write programs which can be executed repetitively with
asimple instruction to the server. The programs are called Stored Procedures and consist of a

series of Transact-SQL commands with structuresto control program flow, receive parameters
and return values and other features representing familiar programming principles.

One advantage of Stored Proceduresis that they are executed on the server, performing a
series of actions, before returning the results to the client. This allows a repetitive series of
actions to take place with minimum network traffic and can considerably improve
performance in many cases.

Security permissions can keep the underlying data hidden from the programmer to aid in more
complex security requirements. For example, a stored procedure could be used to add bank
account details to the database with access to the underlying table denied to the user.

Stored Procedures also have direct access to server resources and can call programs residing
on the server to integrate with other systems or parts of the computer infrastructure.

Stored Procedures are created with the CREATE PROCEDURE command:

CREATE PROCedure [owner.]procedure name[;number]
[(parameterl [, parameter2]...[parameter2100])]
[{FOR REPLICATION} | {WITH RECOMPILE}
[{[WITH] | [,]1} ENCRYPTIONI]]
AS sql statements

Local and Global Temporary procedures can be created
by prefixing the procedure name with a # or ##
respectively.

SQL Enterprise Manager can be used to create and maintain stored procedures instead of
using the CREATE, ALTER, and DROP PROCEDURE statements.

© REDWARE 1996,2001. 46

SQL Server 2000 Handbook

Stored Procedure Properties - New Stored Procedure
Genmall
M arne; <Mew Stored Procedure: Eemizsian:.. |
Cwner:
Create date;
Tent:
CREATE PROCEDURE stpgetauthors A5 -
zelect * from authors
1] | »
22207
Save az Template |
k. Cancel | Help i

Creating a Stored Procedure

Sored Procedures may be renamed with the sp_rename
system procedure.

Executing a Stored Procedure

[[EXECutel
{[@return status =]
{[[[server.]database.] owner.]procedure name [;number] |
@procedure name var}
[[@parameter name
[, [eparameter_:
[WITH RECOMPILE]

=] {value | @variable [OUTPUT]
name =] {value | @variable [OUTPUT]}]...]

Stored procedures may perform an action or sequence of actions and return asingle value or a
result set. To execute a stored procedure immediately you can use the SQL Query Analyser
tool. Typein the keyword EXECUTE followed by the procedure name and any parameters.
Theresult or result set is displayed in the Result window:

EXECUTE stpgetauthors

© REDWARE 1996,2001. 47

SQL Server 2000 Handbook

Executing a Stored Procedure

Query - REDNTS001A\REDWARE . pubs. REDNTS 001 YAdministrator - Untitled1~ _[Of= |

execute stpgetauthors

|

-

au_ id au_lname au_fname phone address city |st,at,e | z -]
1 172-32-1176 White Johnson 405 496-7223 10932 Bigge Rd. Menlo Park Ch B
2—213—46—8915 Green Marijorie 415 986-7020 309 63rd 3t. #411 Qakland Ch 9
3_238—95—?'?66 Carson Cheryl 415 545-7723 589 Darwin Ln. Berkeley Ch 9
‘1_26?—‘11—239‘1 O'Leary Nichael 405 286-2428 22 Cleveland Aav. #14 3an Jose Ch 9
5—2?‘1—80—9391 Straight Dean 415 534-2919 5420 College Abv. Cakland Ch 9
?341—22—1?82 Smith Meander 913 543-0462 10 Mississippi Dr. Lawrence K3 6x
1

[T Giids I Messagesl

|Quer_l,l batch completed.

|HEDNTSDD1\HEDWAHE [a.m |F|EDNTSDD1\Administrator [57] |pubs |D:DD:DD

Sored procedures normally return text messages
indicating how many records have been selected along
with other information. This can be suppressed by issuing
the SET NOCOUNT ON command at the beginning of the
stored procedure.

|231ows [Ln1, Col22

Stored procedures can also be executed from inside triggers or other stored procedures using
the EXECUTE command. Thisis useful as common code can be placed out into a stored
procedure for software reuse. Nesting and recursion is allowed down to 32 levels and the
@@NESTLEVEL system variable indicates how many levels down the application has

passed.

The EXECUTE command can also parse a string or a variable to execute code that can vary
according to the context. The following example will select from atable specified in alocal

variable:

DECLARE @tname varchar (20)
SELECT @tname='authors'
EXECUTE ('select * from ' + @tname)

Multiple commands can be executed with the EXECUTE command:

EXECUTE('set nocount on;'

+

'execute stpgetauthors'

)

The procedure name may even be placed inside a variable so that automated tasks can be

performed from atable:

DECLARE @pname varchar (20)
SELECT @pname='byroyalty'

EXECUTE @pname 40

© REDWARE 1996,2001.

48

A

SQL Server 2000 Handbook

One very important feature of Stored Proceduresisthat a
procedure on a remote server may be run simply by
specifying the server name in the procedure execute
command. The remote server needs to be defined by the
QL administrator so that the servers can communicate
but there is no need to log onto the second server asthe
local server will handle the communication.

Passing Parameters

Stored procedures can accept parameters and these are held in variables preceded with an @
symbol. These variables need their type defined explicitly in the stored procedure.

The following example accepts a parameter and returns a results set with the Authors selected
by Surname according to the parameter passed.

CREATE PROCEDURE stpgetauthors
@surname varchar (30)
AS
BEGIN
SELECT * FROM authors
WHERE au lname LIKE @surname
END

The parameter is passed to the procedure as follows:

execute stpgetauthors '[a-d]%!

Be careful when using SELECT * in a stored procedure as
the fields are stored when the procedure is created or
altered and may not reflect recent changesto the table
structure.

Procedures can be created with default values for the parameters if none are entered by the
user. The following example defaults the parameter to null and causes an error message if no
parameter is passed to the function.

CREATE PROCEDURE stpgetauthors
@surname varchar(30)=null

AS
BEGIN
IF @surname = null
BEGIN
RAISERROR('No selection criteria provided !', 10, 1)
END
ELSE
BEGIN
SELECT * FROM authors
WHERE au lname LIKE @surname
END
END

A stored procedure may have more than one parameter declared and values are passed to the
procedure in the order that they are declared:

CREATE PROCEDURE stpMathTutor @x int =1, @y int =1 AS
BEGIN

© REDWARE 1996,2001. 49

SQL Server 2000 Handbook

END
The procedure may be executed with values of 2 for x and 3 for y as follows:
EXECUTE stpMathTutor 2,3

Missing out the second parameter with the execute will cause the variable to take up the
default value and so the following example will run the procedure with x as 2 and y asthe
default value of 1.

EXECUTE stpMathTutor 2

Parameters may also be declared explicitly in the Execute command allowing for them to be
specified independently of the order in which they have been declared. The following example
givesy avalue of 3 and leaves x undefned to take the default value of 1:

EXECUTE strMathTutor @y = 3

Returning a Value

Stored procedures also have the ability to return avalue. Thisis done by using the return
command in the procedure;

CREATE PROCEDURE stpMathTutor
@x int =1 ,

@y int =1
AS
BEGIN

RETURN @x + @y
END

The value isreturned by assigning the procedure to the variable as follows:

DECLARE @equals int
EXECUTE @equals = stpMathTutor 2,3
SELECT @equals

SQL Server will default the return value to zero. The returned values are typically used to
return a status flag from the stored procedure with a non-zero value usually indicating failure
during processing.

Returned values are difficult to access using ODBC their
use is recommended only to return a success or failure of
the stored procedure when communicating with other
stored procedures.

Output Parameters

Vaues may also be returned into an output parameter by a stored procedure in asimilar
fashion to other programming languages returning a value by reference. Thisis achieved by
including the 'output’ command after the output parameter in the procedure definition.

ALTER PROCEDURE stpMathTutor
@result int output,
@x int =1 ,

@y int =1
AS
BEGIN

set @result = @x + @y
END

© REDWARE 1996,2001. 50

SQL Server 2000 Handbook

The returned value from a procedure can be stored in avariable for later usein the calling
procedure or trigger. The variableis called in the command line with a“output” modifier;

EXECUTE stpMathTutor @equals output, 2, 3

Jue HEL UUTARED'WARE _pubs HEL U1 vAd ato - O =

declare @dequals int -
execute stpmathtutor Hequals output, 2,3
select Hegquals

(Mo column name)

1]

.] Grids | Messagesl
|REDNTSO014RED' REDNTS001\Adrmiristrator (53] [pubs | 0:00:00 1rows Ln2,Col36

Executing the Math Tutor

Program Structures

Transact SQL isprimarily a set based language designed for processing sets of data using
SQL statements. The language does contain control of flow structures similar to other
programming languages.

The BEGIN...END statements are used to create a statement block around a series of Transact
SQL statements.

BEGIN
{sql statement | statement block}
END

The IF...ELSE structure is used extensively inside triggers and stored procedures.

IF Boolean expression

{sql _statement | statement block}
[ELSE [Boolean expression]

{sql statement | statement block}]

The structure can use a SELECT statement to perform complex interrogations on data:

IF (SELECT SUM(gty) FROM inserted) > 500
BEGIN

END

Remember the BEGIN...END structures around blocks of
code otherwise only the first line is taken as part of the
program flow.

© REDWARE 1996,2001. 51

SQL Server 2000 Handbook

WHILE Boolean expression
{sql _statement | statement block}
[BREAK]
{sql statement | statement block}
[CONTINUE]

The WHILE statement can be used to perform aloop to process a cursor for example. This
might be useful when complex sets of different updates and actions need to be performed for
each record in atable or when a server cursor is processed.

GOTO can be useful in controlling program flow. A label is defined in the code by placing a
line with alabel name and a colon and the GOTO command will move program flow to the
label. Thisis especially useful with complex triggers and stored procedures where rollback
and updates need close control:

IF (SELECT SUM(gty) FROM inserted) = 0
GOTO noprocessing

noprocessing:

A stored procedure can be terminated at any time with the RETURN statement that returns an
integer value (default is zero) to the calling program.

Comments can be placed in a stored procedure either with /* */ delimiters or with a double
hyphen (--) to make the rest of alineinto a comment.

/* Test the quantity */
IF @guantity = 0
RETURN (-1) -- No processing required.

Local Variables

DECLARE @variable name datatype
[, @variable name datatype...]

Local variables are used to store values within Transact-SQL . They must be declared before
use and a datatype assigned.

The SELECT statement is then used to assign values to the variables.

SELECT @variable = {expression | select statement}
[, @variable = {expression | select statement}...]
[FROM table listl]
[WHERE search conditions]
[GROUP BY clause]
[HAVING clause]
[ORDER BY clause]

Values can be assigned in a similar fashion to most programming languages:

DECLARE @xvalue int
SELECT @xvalue = 22

Vaues can be determined by a SELECT statement which queries the database and returns a
single value:

DECLARE @titleqty int
SELECT @titleqgty = (SELECT SUM(qty)
FROM sales WHERE title id = @titleid)

The SET statement can be used instead of SELECT to assign avalue to avariable:

DECLARE @dialcountry varchar (20)
SET @dialcountry =
CASE @dialprefix

© REDWARE 1996,2001. 52

SQL Server 2000 Handbook

WHEN '44' THEN 'UK'
WHEN '0l1' THEN 'USA'
ELSE 'OTHER'

END

If the SELECT command used with alocal variable as the last line of a stored procedure then
the value of the variableis returned as a one record results set to the calling application:

SELECT @xvalue AS x, @yvalue AS y

System Variables

System variables exist which are automatically determined by SQL Server and do not have to
be declared. These are always available and indicate a variety of values.

For example:

@@error Error number

@@identity Latest identity value of newly inserted record
@@language Language currently in use
@@max_connections M aximum connections allowed to the server
@@rowcount Number of records affected by last command
@@rowcount Number of rows affected by last statement
@@servername SQL Server name

@@version Version number of SQL Server

Other system information is returned from scalar functions:
DB_NAME() Database Name

SUSER_SNAME() NT User Name

USER_NAME() SQL Server User Name

All of these system variables can be used as required within any Transact SQL code as shown
in the following example:

CREATE PROCEDURE stpserverinfo AS
select db name(), user name(),suser sname(), @@servername,
@@max connections, @@version, getdate()

Scalar Functions

Scalar functions can aso be used to perform an operation and return asingle value. There are
many examples some of which are listed below:

Mathematical and trigonometric functions:

° abs (-22.33)

d pi()

° sin(30)

. cos (30)

° tan(30)

° rand (22)

. round (3.4456,2)

Date functions:

° datepart (yyyy,getdate())
o year (@datevalue)

© REDWARE 1996,2001. 53

SQL Server 2000 Handbook

° dateadd(yyyy, 2, @datevalue)
o datediff(yy, @datevalue,getdate())
. month(@datevalue)

String functions:

o left('abcl23',3)

. ltrim("' abc!')

. replace('abc','b','z')
° soundex ('abec')

. substring('abec',2,1)

o upper ('abc')

Miscellaneous:

° cast('abc' as varchar(5))

° convert (int, 22.33)

o columnproperty(object id('authors'),'city',
'allowsnull')

o isnull (@xvalue,0,1)

Look at the entry on 'scalar functions' in the online books
for more information.

CASE Expression

CASE expression
WHEN expressionl THEN expressionl
[[WHEN expression2 THEN expression2] [...]]
[ELSE expressionN]

END

The CASE expression is very useful for assigning different values according to an expression
for each record of atable. The following example will evaluate a description of the Authors
contract status as afield in the results set according to the defined conditional rules:

SELECT *,
'Contract Status' = CASE
WHEN contract 1 THEN 'Contracted'
WHEN contract 0 THEN 'No Contract'
END
FROM authors

The CASE expression can be used anywhere where an expression is required including in an
Update statement to set valuesinto afield.

This sophisticated example, shown blow, is taken from the SQL On-Line reference and shows
a SELECT statement used within a CASE to change the expression shown:

SELECT a.au lname Surname, a.au fname Forename,
"Royalty Category" =
CASE
WHEN (SELECT AVG(royaltyper) FROM titleauthor ta
WHERE t.title id = ta.title_id) > 60
THEN 'High Royalty!'
WHEN (SELECT AVG(royaltyper) FROM titleauthor ta
WHERE t.title id = ta.title_ id)
BETWEEN 41 and 59
THEN 'Medium Royalty'

© REDWARE 1996,2001. 54

SQL Server 2000 Handbook

ELSE 'Low Royalty!'
END
FROM authors a, titles t, titleauthor ta
WHERE a.au id = ta.au id AND ta.title id = t.title id
ORDER BY 1,2,3

Cursors

Stored procedures often need to process each record in a table and perform an action. For
example a housekeeping program might run through all the new ordersin a sales database and
send email messages to the account manager in instances where the delivery date is more than
five days from the date of order.

Cursors alow for the selection of the recordsin a stored procedure and the sequential
processing of each record. Scrollable cursors also allow movement forwards and backwards
through the table.

DECLARE cursor name CURSOR
[LOCAL | GLOBAL]
FORWARD ONLY | SCROLL]
STATIC | KEYSET | DYNAMIC | FAST FORWARD]
READ ONLY | SCROLL LOCKS | OPTIMISTIC]
TYPE WARNING]
FOR select statement
[FOR UPDATE [OF column name [,...n 1 1 1

Lo e o W |

The cursor must first be declared before the FETCH command can be used to move up and
down the cursor.

FETCH [[NEXT | PRIOR | FIRST | LAST | ABSOLUTE n | RELATIVE nl]
FROM] cursor name
[INTO @variable namel, @variable name2, ...]

The @@FETCH_STATUS variable is set to zero after a successful FETCH and should
always be checked before processing. A value of -1 indicates that the results set has been
exceeded and -2 indicates that the cursor record is no longer a member of the original table.

Cursorsare relatively slow and should not be used if more
traditional set based processing is possible. Complex
expressions can be created with the CASE expression
within a SELECT statement and should be used in
preference to a cursor whenever possible.

The following example illustrates the use of a cursor to process the records in a table one by
one. The cursor is created from a SELECT statement and the OPEN command used to open
the cursor. The value are FETCHed into variables that have already been defined and a
WHILE loop used to process each record. The logic for each record is contained in the loop
and mails a simple message.

CREATE PROCEDURE cursortest AS

DECLARE @id wvarchar (12)

DECLARE @firstname varchar (40)
DECLARE @surname varchar (40)
DECLARE @message varchar (80)

DECLARE curAuthors CURSOR LOCAL
FOR SELECT au_id, au fname, au_ lname

© REDWARE 1996,2001. 55

SQL Server 2000 Handbook

FROM authors WHERE contract = 1
FOR READ ONLY

EXECUTE master..xp startmail

OPEN curAuthors
FETCH NEXT FROM curAuthors INTO @id, @firstname, @surname
WHILE (@@fetch status <> -1)
BEGIN
IF (@eefetch status <> -2)
BEGIN
SELECT @message = @id + @firstname + @surname
EXECUTE master..xp sendmail 'stamati crook', @message
END
FETCH NEXT FROM curAuthors INTO @id, @firstname, @surname
END
DEALLOCATE curAuthors

Take careto CLOSE or DEALLOCATE a cursor when you have finished it to prevent using
t00 many server resources.

An alternative to a WHILE loop isto use a program
marker and the GOTO statement.

System Procedures

The MASTER database contains several system procedures which are created when SQL
Server isinstalled. These procedures have 'sp_' as a prefix to their name and are used mainly
for administration purposes. They can be accessed from any database as long as the user has
access rights to the master database. The procedures can be copied into your own database and
edited to suit your needs.

One example is the system procedure sp depends which returnsthe dependencies of a
SQL Server table, view or procedure object. The procedure returns aresult set indicating all
the objects upon which the object depends and all those that depend on it.

EXECUTE sp depends 'authors'

There are many system procedures affecting all aspects of the database and server
configuration. For example, batch scripts may be created to add users to a database. See the
Transact SQL Reference manual for details.

There are hundreds of system stored procedures described in the online help. Some more
useful system procedures are described below:

sp_helpdb Details of the databases defined on the server.
sp_helpdb pubs Details of the pubs database.
sp_help authors Provides details on any database object.

sp_helptext byroyalry | Providesthetext of astored procedure.

sp_depends authors Details of all objects that debend on the specified object.
sp_changeowner Change the owner of an object (usually to dbo).
Sp_rename Rename an object.

© REDWARE 1996,2001. 56

SQL Server 2000 Handbook

Extended Procedures

Extended Procedures are used to call programs residing on the server automatically from a
stored procedure or atrigger run by the server.

The extended stored procedures are held in the MASTER database and may be used to interact
with the server. The following example is used to log an event in the NT event log of the
server without raising any errors on the client application:

declare @logmessage varchar (100)
set @logmessage = suser sname() + ': Attempted to access the bingo system.'
exec master..xp logevent 50001, @logmessage

The XP_CMDSHELL command will run an operating system command on the server:
EXECUTE master..xp cmdshell 'dir e:*.*!

This functionality is very dangerous in the wrong hands as
files may be deleted on the server or wor se havoc caused.

An example extended procedure might call aVisual Basic program that runs on the server
whenever an order is entered into the database which reads the SQL database in order to enter
datainto a FoxPro system that is used for Order Processing. This functionality could also be
performed from the original application but implementing at the server level allows for orders
to be created in avariety of front end implementations and yet always perform the required
transactions.

DLLs may be created on the server and called within SQL
Server as an extended procedure after registering the
procedure with the sp_addextendedproc function.

Extended Mail Procedures

SQL Server includes extended procedures that facilitate the integration with Microsoft Mail.
This allows an update trigger, for example monitoring stock levels, to generate an electronic
mail message whenever the stock level falls below the reorder level.

SQL Server can be configured to “ Auto Start Mail Client” when the SQL Server Serviceis
started or Mail can be run on the server before starting the SQL Server service. Alternatively
the mail client may be started on the server with the following extended procedure:

EXECUTE master..xp startmail

The startmail extended procedure can accept username
and password to start a particular mail session if the
setup defaults are not acceptable.

Mail may be sent to amail user as a simple mail message or with the attachments of afile or
results from a SQL Query:

EXECUTE master..xp sendmail 'stamati crook', 'Reorder Disks
20303 Please!l'’

© REDWARE 1996,2001. 57

SQL Server 2000 Handbook

The mail procedures require the full user name as
parameters. The shortened mail name will create an
error.

SQL Server can also read mail to form part of an integrated Mail - Database Information
strategy. There are extended procedures to read mail and to process queries attached to mail
messages and attach the results set into amail message and so on.

Error Handling

Stored procedures return a zero value by default. The convention isto return a zero value if
the stored procedure is successful and a non-zero value for afailure.

declare @returnvalue int

exec @returnvalue = stpgetauthors
if @returnvalue <> 0

begin

The RAISERROR command is used to create error messages from the server which are
returned to the application. The command will return an error number and a message to the
calling application error handle.

RAISERROR ({msg id | msg str}, severity, state
[, argumentl [, argument2]])
[WITH LOG]

The severity isanumber from O to 25 although only system administrators should use values
above 18. The convention is as follows:

10 isfor information only

11-16 isfor errorsthat can be corrected by the user
17 iswhere system resources are exceeded

18 isanon fatal system error

Severity levels 17 and above should be notified to the system administrator. The stateis a
number from O to 127 that can be used as you like.

Additional arguments can be included in an error message to provide additional information
for a specific instance of the error. The following example raises an error and includes details
of the author identifier and the number or records retrieved in the error message. It also
recordsthe error in the NT Event log of the server.
if @@rowcount <> 1
begin
raiserror (
'stpgetauthordetail: %s :Incorrect (%i) number of records found !',
16,1,@authorid, @@rowcount) with log

return (2)
end

The default error number for a user created error is 50000. All user created errors should have
an error number greater than 50000.

Error messages may be added into the database catalogue of error messages with the
sp addmessage stored procedure which stores a message against an error number and
severity:

sp addmessage 52001,16,'%s : Incorrect Parameters !'

The error is called with the RAISERRROR command without the need to supply the message
text each time. This also allows messages to be displayed in multiple languages or system
alertsto be defined to notify the system administrator immediately a particular error occurs.

if @authorid = null

© REDWARE 1996,2001. 58

SQL Server 2000 Handbook

begin
raiserror (52001,16,1, 'stpgetauthordetail-authorid’')
return (-1)

end

The @@ERROR system variable can be used to control errors alittle more closely. The
following stored procedure updates the value of the ZIP field in the authors table. Thisfield
has a constraint and will only alow afive numeric value to be applied. The @@ERROR
value is used to trap for an error and return an explanatory error message to the client.

CREATE PROCEDURE stpsetauthorzip
@authorid id,
@zip char (5)
AS
update authors
set zip = @zip
where au _id = @authorid
if @@error <> 0
begin
raiserror('Invalid ZIP code: %s',16,1,@zip)
return (2)
end

The above example will return two error messages to the
client. Thefirst error is generated by SQL Server to
indicate a failure of the constraint and the second
generated by the user.

The error can also be trapped for in a stored procedure that traps the result code returned from
another stored procedure:

declare @return int
exec @return = stpsetauthorzip '267-41-2394"','74722"
if @return <> 0
print 'failue'
else
print 'ok'

Transactions

Stored Procedures often implement a series of transactions that update the database.
Occasionally one of these transactions may fail, perhaps because another user has locked the
resource or because a database constraint is activated, and an error is generated within the
stored procedure. The programmer may need to control the transactions within the stored
procedure to ensure that all or none of the transactions are written to the database.

Transactions are controlled with three commands:

. BEGIN TRANSACTION starts a transaction and also allows for nested transactions.
. COMMIT TRANSACTION will write all of the current transactions to the database.
. ROLLBACK TRANSACTION will undo al of the changes to the database for the

current transaction.

L Server will 'write ahead' any changes to the database
allowing for another user to read uncommitted data if they
use the NOLOCK option of a SELECT statement.

© REDWARE 1996,2001. 59

SQL Server 2000 Handbook

The programmer can check for errors after each database update and then rollback the
transaction if required. The following stored procedure adds an order to the SALES table
provided that there is enough stock for the particular title indicated in the STOCKLEVEL
field of the STOCK table.

Errors are monitored after each database update using the @@ERROR global variable and the
whole transaction rolled back if an error occurs. This prevents the stock values from being
debited if the subsequent order record cannot be created (for example if the order number is
not unique).

CREATE PROCEDURE stpaddorder

@storeid char(4),

@orderid varchar (20),

@titleid tid,

@quantity int,

@orderdate datetime,

@payterms varchar (20) = 'Standard’'
AS

/*

Author: Stamati Crook

Date: 6 October 2001

Name: stpaddorder

Purpose:

Adds an order into the sales table after checking that there is sufficient
stock.

*/

DECLARE @errortrap int
SET @errortrap = 0

IF NOT EXISTS (SELECT title_id FROM stock WHERE title id = @titleid)
BEGIN

RAISERROR ('No Stock Record',16, 1)

RETURN (-100)
END

IF (SELECT stocklevel FROM stock WHERE title id = @titleid) < @quantity
BEGIN

RAISERROR ('Not enough stock',16, 1)

RETURN (-101)
END

BEGIN TRANSACTION
UPDATE stock

SET stocklevel
WHERE title id

stocklevel - @quantity
@titleid

SET @errortrap = @@error

IF @errortrap = 0
BEGIN
INSERT INTO sales
(stor_id, ord num, ord date, gty, payterms, title id)
VALUES
(@storeid, @orderid, @orderdate, @quantity, @payterms, @titleid)
SET @errortrap = @@error
END

IF @errortrap = 0
BEGIN
COMMIT
END
ELSE
BEGIN
RAISERROR ('Error updating sales or stock table',16, 1)
ROLLBACK
RETURN (-102)
END

© REDWARE 1996,2001. 60

SQL Server 2000 Handbook

RETURN 0

Distributed Transactions

Distributed transactions can be controlled by the programmer to allow transactions on
different SQL Serversto be committed or rolled back:

DECLARE @result int
BEGIN DISTRIBUTED TRANSACTION
EXECUTE @result = stpaddorder '7066', '240','PC1035',1,'2001-
05-23"
IF @result = 0
EXECUTE @result = remote.pubs.dbo.stpaddorder '7066',
'240','PC1035',1,'2001-05-23"
IF @result = 0
COMMIT DISTRIBUTED TRANSACTION
ELSE
ROLLBACK DISTRIBUTED TRANSACTION
RETURN @result

This type of functionality is often created asa middle tier
component on Microsoft Transaction Server which can
also control distributed transactions using the same
transaction coordinator that SQL Server uses.

© REDWARE 1996,2001. 61

SQL Server 2000 Handbook

9. Triggers

Triggers allow for more sophisticated validation to be defined against a table than can be
provided through the field level Rules. They may also be used to ensure r eferential integrity,
to cascade changes throughout related records, and to determine the changes made to afield
and perform appropriate action.

Three triggers may be defined against each table which operate when a new record is inserted,
modified, or deleted respectively. Triggers are programmed to prevent insert, update, and
delete anomalies that may occur when updating the database.

L Server also allows the definition of Primary and
Foreign Keys to enforce referential integrity at the
database level.

An example of an insert anomaly might be the creation of an Invoice record which does not
have avalid foreign key relationship with the Customer table. If this were to occur there
would be no means of determining the address for the Invoice.

Update anomalies, which should be checked when inserting a record, often enforce business
rules as well asreferential integrity issues. An Invoice date cannot be changed after it has been
issued, or the total outstanding amount cannot exceed the credit limit for the customer.

Delete anomalies often involve referential integrity issues where arecord may not be deleted
if there are related records in another table. Thisis usually performed by setting up referential
integrity with primary and foreign keys.

Triggers are created with the MANAGE-TRIGGERS window for the appropriate database
using a programmable form of SQL known as Transact SQL. Transact SQL is an extension
of SQL that allows program flow and the use of variables to determine the actions performed
for atrigger.

A typical trigger will perform some validation and rollback the transaction with appropriate
error messages of there is aviolation of the database validation rules. More sophisticated
triggers may update values or delete records in other database tables. Typical examples are
given below and further information on the avail able syntax for Transact SQL can be obtained
from the reference manual.

Multiple triggers can be defined on a table and the
sequence of execution controlled with the
sp_settriggerorder system stored procedure.

Trigger Program Structure

Triggers are created with the MANAGE-TRIGGER menu which brings up the trigger
window.

CREATE TRIGGER [owner.]trigger name
ON [owner.]table name
FOR {INSERT, UPDATE, DELETE}
[WITH ENCRYPTION]
AS sql statements

© REDWARE 1996,2001. 62

SQL Server 2000 Handbook

Trigger Properties

General |
@? Mame: S = trgsales [dbo)
Text:
CREATE TRIGGER trgzales OM [dba] [zales] -
FOR INSERT. UPDATE I
A5
beqin
if exizta] select title_id from inserted i where i gty <5]
begin
rollback tranzaction
raizerror Huantity must be greater or equal to 51161]
enid o
end -
4] | »
Check Syntax | Delete | Save azliemplate | 3,343

Ok I Cloze | Ll | Help |

Creating a Trigger with the SQL Executive

Triggers employ two conceptual tables, 'deleted' and 'inserted' to allow for Transact SQL to
determine the values in arecord before and after atransaction. An Insert transaction will
create arecord in the 'inserted' table before compl eting a transaction, a delete transaction will
create arecord in the 'deleted' table, and an Update will place the old values for the record in
the 'deleted' table and the new values in the 'inserted' table.

These virtual tables may, in some circumstances, contain
more than one record. It istherefore necessary to
structure any processing to process all the potential
records The system variable @@rowcount indicates the
number of records to process.

The examples use set based processing to cater for several
records. Some processing may require the use of Cursors
as described in the Stored Procedures section..

Program flow can be controlled with an | F statement normally used in conjunction with a
select statement that returns a single value. The next Transact SQL statement is executed if the
condition istrue. If more than one line of Transact SQL is required for a particular condition
they must be enclosed in aBEGIN...END construct.

The UPDATE() function is often used to indicate if afield has been changed by the
application. If the field has not been changed the function returns a false value and the
program flow will skip the next line or BEGIN..END section.

A count of the records is usually made to test if any records have failed the required business
rules.

© REDWARE 1996,2001. 63

SQL Server 2000 Handbook

The IF EXISTS (SELECT....) clause is more efficient than
IF (SELECT COUNT(*) ...) >0 because processing stops
after thefirst record is found.

Error messages need to be returned to the application if appropriate. Transact SQL allows for
aPRINT command to display error messages but the RAISERROR command is better for
creating a smooth interface with the application. SQL Server error numbers above 50,000 are
reserved for applications and the RAISERROR command can generate an error number in the
calling application as well as supplying error text.

If arule causes atransaction to fail it should be rolled back with the ROLLBACK
TRANSACTION command. SQL Server will not update the database and the application will
need to perform appropriate actions to recover from the error or attempt to resubmit the
changes.

Triggers should be commented well and cross-referenced with the data dictionary
documentation. Comments are enclosed with a forward slash and asterisk as shown in the
example.

Trigger functionality often needs to be implemented both
as INSERT and as UPDATE triggers to prevent incorrect
data from being entered.

Typical syntax for atrigger is shown below.

CREATE TRIGGER truOrderUpdate ON tabOrders FOR UPDATE AS

IF UPDATE(fieldname)

BEGIN
/* This is a Comment */
IF EXISTS (SELECT * FROM inserted WHERE expression) > 0
BEGIN

Transact SQL Statements...

RAISERROR 52001 'This is an error message!'
ROLLBACK TRANSACTION
END
END

Remember to place BEGIN and END statements after a
program flow statement if more than one Transact SQL
statement is required within the IF statement.

Field Level Validation

Some field validation can be performed using a Rule. The advantage of aruleisthat itis
defined independently of the field and may be applied consistently to several fieldsin the
database.

Update triggers may be used to check field valuesin a similar manner to arule. The form of
the Transact SQL is asfollows;

CREATE TRIGGER truorder ON dbo.taborder
FOR UPDATE

AS

BEGIN

© REDWARE 1996,2001. 64

SQL Server 2000 Handbook

IF EXISTS (SELECT * FROM inserted
WHERE freight > 50.0)
BEGIN
ROLLBACK TRANSACTION
RAISERROR 52001 'Freight must be less than £ 50 !'
END
END

Notice that the Transact SQL is designed to work with
more than one record in the inserted table.

Record Level Validation

Thetrigger is more flexible than arule and can check other valuesin the record or in other
tables as well as performing complete queries and complex sequences of operations.

The following example of an Update Trigger prevents the Freight field from being greater
than the Limit field in the same record.

IF UPDATE (Freight) OR UPDATE (Limit)
BEGIN
IF EXISTS (SELECT * FROM inserted WHERE Freight>Limit)
BEGIN
ROLLBACK TRANSACTION
RAISERROR 52002 'Freight must be less than Limit!'
END
END

Avoid Null values in numeric fields as they will not default
to zero for validation purposes. Define a zero default for
thefield.

Checking Values against another Table
Triggers may also be used to check values against another table.

Inserting a new Invoice Item record may require a stock check against the relevant product
record. Changes to the line item are prevented in the Update trigger so this check is only
required on Insert.

Preventing Changes to a Field

The UPDATE() function will indicate if a particular field has been updated during a
transaction. A typical trigger would check if afield has been updated and rollback the
transaction after error handling.

Thisis particularly useful for primary and foreign key values which should not be changed
after inserting the record as shown in the following trigger code:

IF UPDATE (Order ID)
BEGIN

ROLLBACK TRANSACTION

RAISERROR 52003 'No update allowed on Order Identifier!’
END

© REDWARE 1996,2001. 65

SQL Server 2000 Handbook

Security may be defined at the field level to prevent
certain users from updating certain fields.

Referential Integrity Checks

SQL Server 6.0 implements referential integrity checks automatically when Foreign Keys are
defined against the corresponding Primary Key. The integrity check is mandatory and it is not
possible to enter empty values against aforeign key field if the relationship is optional .

Implementation of referential integrity in database triggers is also possible and its the method
employed before SQL Sever 6.0. Greater control is possible over error messages and optional
relationships or cascading deletes.

Referential Integrity checks are easy to implement with
Foreign Keys and this should be used wherever possible.
The referential integrity is checked by the server before
the triggers are fired and the programmer may prefer that
all errors are processed together. In this case referential
integrity must be implemented as triggers.

Referential integrity often involves the setting up of several triggers. A typical scenario for a
mandatory relationship between parent and child tables would involve an insert trigger on the
child table to check the foreign key, an insert trigger on the parent table to ensure unique
primary keys, a delete trigger on the parent table to avoid orphaned child records, and update
triggers on both the parent and child tables to ensure that the primary and foreign key values
are not updatable.

Checking a Foreign Key

Triggers may be used to check referential integrity when entering a new record. This usually
involves ensuring that the new record has a corresponding occurrence in another table.

Foreign Keys may be implemented with atrigger that allows empty values or checks the
referential integrity of the entered value. The trigger needs also to be defined on Update or
changesto the field prevented.

CREATE TRIGGER triOrders ON tabOrders FOR INSERT AS
BEGIN
/* Check Customer-Orders Integrity */
IF (SELECT COUNT(*) FROM inserted, tabCustomers
WHERE (inserted.Customer ID = tabCustomers.Customer ID)
<> (SELECT COUNT (*) FROM inserted))

BEGIN
RAISERROR 52005 'Orders must have a valid or blank
Customer!'
ROLLBACK TRANSACTION
END
END

It is easier to define Foreign keys with the Foreign Key
feature of the Manage Tables window.

© REDWARE 1996,2001. 66

SQL Server 2000 Handbook

Ensuring Unique Candidate Keys

Primary keys are usually enforced by defining an index that is unique however this
functionality may also be performed with atrigger for candidate keys where values may also
be left blank.

/* Check that Primary Key is Unique */

IF EXISTS (SELECT id FROM inserted, taborder
WHERE inserted.id = tabOrder.id)

BEGIN
RATISERROR 51004 'Order Identifier is not Unique!'
ROLLBACK TRANSACTION

END

QL Server will check the unique index before checking
theinsert trigger and the trigger validation error will not
occur. Unique primary key indexes are the recommended
approach for ensuring the uniqueness of a key value.

Checking Referential Integrity on Delete

Referential integrity checks on deletion prevent records from being deleted if there are
dependent recordsin related tables. An example is shown below where the Order table has
many Order_Details records linked on the common Order_ID field.

CREATE TRIGGER trdorder ON taborder FOR DELETE AS
BEGIN
/* Check Order Item Integrity */
IF EXISTS (SELECT id FROM deleted, taborderitem
WHERE deleted.id = taborderitem.order)
BEGIN
ROLLBACK TRANSACTION
RAISERROR 52004 'Order Items Exist!'
END
END

Cascading Delete

Delete validation usually prevents deletion of a parent record if any child records exist in a
related table. It is possible for the deletion trigger to automatically delete the child records
when the parent record is del eted.

This Cascading Delete prevents orphaned child records existing in the database and removes
the need for the application to delete the child records before attempting to delete the parent
record.

CREATE TRIGGER trdorder ON taborder FOR DELETE AS
BEGIN
/* Cascading Delete to ensure Order Item Integrity */
DELETE taborderitem FROM deleted, taborderitem
WHERE taborderitem.order = deleted.id
END

© REDWARE 1996,2001. 67

SQL Server 2000 Handbook

Further validation is often required. The select statement
might only delete order detail recordsif there were no
outstanding shipments to be performed and rollback the
transaction if this were not possible. In general,
application level deletion of the child records before
deletion of the parent record allows greater control and
these deletions could be placed into a single transaction
with a Rollback to prevent the possibility of data
anomalies.

A similar approach can be used to allow for changesto a
primary key to cascade down and update foreign key
valuesin child tables, thisis called cascade update. This
approach is not recommended and can be circumvented
by using a second candidate primary key in the parent
table for the application to change and providing
automatic primary keys that are used by the application.

Updating another Table

Triggers may be used to change valuesin related tables. Our example will automatically
updatethe YTD_SALESfield in the Titles table which indicates the number of titles sold so
far this year.

Skilful use of triggers allow for calculated fields to be stored in the database and updated
outside of application control. Remember these fields should not be updatable by the
application. Insert and update triggers may be used to check values against another table as
well as performing foreign key validation.

Calculated field may sometimes be implemented as Views
but there are some restrictions on SQL Server views.

The Insert Trigger on the Sales table will automatically add the sales quantity onto the
YTD_SALESfieldsfor the appropriate titles. Notice that the trigger logic can process several
inserted records at one time.

CREATE TRIGGER trisales ON dbo.sales
FOR INSERT
AS
BEGIN
UPDATE titles
SET titles.ytd sales = titles.ytd sales +
inserted.qgty
FROM titles, inserted
WHERE titles.title id = inserted.title id
END

In thisinstance referential integrity is handled with a
foreign key constraint in the database and does not need
to be implemented at the trigger level.

The Delete Trigger must subtract the value of the deleted Sales from the Titles records:

CREATE TRIGGER trdSales ON dbo.sales
FOR DELETE

© REDWARE 1996,2001. 68

SQL Server 2000 Handbook

AS

BEGIN

UPDATE titles

SET titles.ytd sales = titles.ytd sales - deleted.gty
FROM titles, deleted

WHERE titles.title id = deleted.title id

END

The Update Trigger needs to handle the difference between the original and the new sales
record:

CREATE TRIGGER truSales ON dbo.sales

FOR UPDATE

AS

BEGIN

UPDATE titles

SET titles.ytd sales = titles.ytd sales - deleted.qgty +
inserted.qgty

FROM titles, deleted, inserted

WHERE titles.title id = deleted.title id AND
titles.title id = inserted.title id

END
Finally, updating the Y TD_SALES can be prevented in atrigger in the Update trigger of the
TITLES table:
CREATE TRIGGER truTitles ON dbo.titles
FOR UPDATE
AS
BEGIN
IF UPDATE(ytd sales)
BEGIN
RAISERROR 52010 'YTD SALES may not be updated!'
ROLLBACK TRANSACTION
END
END

Be careful with more complex validations in conjunction
with altering table values. An UPDATE command issued
after a ROLLBACK TRANSACTION will till update the
database. The GOTO command may be useful herein
sending trigger processing to the end of a trigger.

© REDWARE 1996,2001. 69

SQL Server 2000 Handbook

10. SQL Server Optimisation

This section describes how application design can affect server performance and provides
general hints for optimising SQL Server performance.

Query Optimisation

Many database applications retrieve aresults set of data from the server using a SELECT
statement and then selectively update individual records as they are changed by the user.

SELECT statements are passed through a query optimiser which determines the most efficient
way to optimise the query. The optimiser will look at the size of the table and the indexes
defined as well as information on the distribution of records within each index and will
determine which index to use to improve performance.

Some queries will require a table scan which passes through all records in the table before
determining which records are required in the query. Other more complex queries will
perform combinations of index searching and table scanning to create the final results set.

Update Statistics

SQL Server looks at the distribution of records within each index before determining the
optimisation plan. The distribution available to the optimiser is created when the index isfirst
put on the table. Many indexes are created on empty tables and after some months of
operation the optimiser will still not have any knowledge of the distribution of data and may
be considering Table Scans instead of index searches.

It istherefore extremely important that these index statistics are updated after the structure of
the index is changed by the addition of modification of an amount of data. Thisis particularly
true in the first months of system use and should also be performed regularly by the system
manager.

The UPDATE STATISTICS command is used to update the index distributions statistics on a
table and may be called from ISQL:

UPDATE STATISTICS authors

A batch file could be created and run periodically from the ISQL or from a maintenance
program written using pass through queries.

Everybody gets caught out by UPDATE STATISTICS.
Remember to perform this operation on every table after
uploading test data.

Index Design

Definition of appropriate indexes is the single most important performance optimisation
technique. The indexes should reflect the expressions used in the WHERE clause of the most
frequently used queries.

The following query based on the Authors surname requires an index on the AU_LNAME
field for an index as opposed to a table scan to be used:

SELECT au fname forename, au lname surname
FROM authors
WHERE au_ lname LIKE 'C%!'

Many queriesin SQL Server are not case sensitive by
default which simplifies query design.

© REDWARE 1996,2001. 70

SQL Server 2000 Handbook

The expressions used in the Where clause must be recognisable by SQL Server as part of an
index. The above example would not recognise that the surname index could be used if it had
been written in this form:

SELECT au fname forename, au lname surname
FROM authors
WHERE substring(au lname,l) = 'C!

Take care with wildcard characters at the beginning of expressions because they will not allow
an index search:

SELECT au fname forename, au lname surname
FROM authors
WHERE au_ lname LIKE '%opulos'

The Not Equal To operator is not optimised in SQL Server so the following query will not use
an index defined on the price for a search:

SELECT * FROM titles WHERE price <> 10.00
It should be replaced with:
SELECT * FROM titles WHERE price < 10.00 OR price > 10.00

More complex queries will still use asingleindex for optimising the query. A search on
surname and forename will still use only asingle index. Thus a compound index with both the
surname and firstname field will help to optimise the following query:

SELECT au fname forename, au lname surname
FROM authors
WHERE au lname LIKE 'C%' AND au fname LIKE 'S%'

In general the field that has the largest range of distinct
values should be chosen as thefirst field in the index
provided that both fields are used in the major queries.

It isimportant that the expressions that are used in most queries are placed as the first columns
in the index. Suppose athird query on the Authors table required the CONTRACT field asan
expression:

SELECT au fname forename, au lname surname
FROM authors
WHERE au lname LIKE 'C%' AND au fname LIKE 'S%'
AND contract = 1

Adding the Contract field into the index would further optimise the query. However perhaps a
fourth query requiring only the surname and contract fields is also required:

SELECT au fname forename, au lname surname
FROM authors
WHERE au_ lname LIKE 'C%' AND contract = 1

For this query to be fully optimised an index on Surname and Contract only is required. The
previously defined index contains the Surname, Firstname, and Contract fields but the
Firstname field is not used in this query and will prevent the optimiser from fully optimising
the query. The optimiser islikely to use the index to perform the search on the Surname field
but will then have to scan through all the Authors whose Surnames begin with C. A second
index defined on Surname and Contact fields will allow this query to be optimised.

© REDWARE 1996,2001. 71

SQL Server 2000 Handbook

Thereis a performance penalty associated with having too
many indexes on a table particularly when large numbers
of transactions are being made on a table. A trade off
between adding new indexes and having partially
optimised queriesis a necessary part of database design.

Some queries are able to use an index to process a query without looking at the table data.
These covered indexes contain all the fields specified in the fields clause and the where clause
and are particularly useful for summary calculations.

The following select statement would be satisfied by a covered index on the product type and
the quantity:

SELECT SUM(gty) FROM sales GROUP BY prodtype

Ordering

The Order By clause can destroy performance on the server particularly if alarge results set is
required.

SQL Server will create aworktable for sorting in the tempdb database if the ordering criteria
isnot fully satisfied by the index used by the optimiser for the selection criteria. Thisindex
needs to be determined or specified by the programmer to ensure efficient ordering.

The clustered index is used often in the ordering process to prevent the requirement for a
worktable. An analysis of the order required on atable will often lead to the choice of
clustered index and arestriction on the ordering permitted for efficient processing.

The server may chose to use the clustered index rather
than the specified index in an order by clause which
prevents the server from returning the results set until the
selection is completed. The FASTFIRSTROW optimiser
hint allows the server to use the nonclustered index and
returnsthe first row faster. Thisis useful for
asynchronous queries.

Showplan

The ISQL tool allows access to the plan that the optimiser is making to optimise a query.
Once a query has been identified as a potential bottleneck this window can be used to see the
exact optimisation plan that SQL Server isfollowing.

Copy the relevant SELECT statement out from the application and paste into the QUERY
Page of the ISQL tool ensuring that the correct Database is selected.

Select the QUERY OPTIONS menu item from the QUERY menu and chose the SHOW
QUERY PLAN option. The Results Page will show the tables scans or indexes used to
perform the query and indicate if indexes may need to be added to optimise the query.

© REDWARE 1996,2001. 72

SQL Server 2000 Handbook

Showplan Results

il Query - [local]spubsiza =] E3

-‘i%"||.,“‘|ﬂ| EIQEI;IpubS = Queries;lm thee traceoff (330,302,31 ... j El b | .|

Query | Results | Statistics 10 |

STEP 1

The tvyvpe of guery i= DBCC_CHD
STEF 1

The type of guery i= SELECT
FROM TAELE

authors

Hested iteration

Index : aunmind

FROM TAELE

titleauthor

Hested iteration

Table Scan

FROM TAELE

titles

Hested iteration

T=zing Clustered Index

DECC execution completed. If DBCC printed error messages, =ee your Sy=tem Adminis
au_id title

| |»

238-95-7766 But I= It User Friendly?
(1 rowis) affected)

STEP 1
The tvype of guery i= SETCFF

-
1| | »

|| [Cannestions 1 20, 22726

Salecting NO EXEC from the QUERY menu will create the
optimisation plan without performing the query.

The STATISTICS I/O Page will show the logical and physical disk reads and if the query
takes along time and can be specified in the QUERY menu option.

The DBCC TRACEON command may be issued to show additional query optimisation
statistics. This can selectively display the join order chosen by the optimiser, the estimated
costsin terms of disk reads. The following command will show an abundance of optimiser
information when performed with the Statistics and Execution Options set:

dbcc traceon (330,302,310,3604)
select authors.au id, titles.title, titles.ytd sales
from authors, titleauthor, titles
where authors.au id = titleauthor.au id
and titles.title id titleauthor.title id
and au lname like 'C%!'

o

SQL Trace

SQL Server 6.5 boasts a new utility that allows monitoring of SQL Server operation whilst a
live application is running. This can be useful for analysing which queries are being run in a
production environment.

© REDWARE 1996,2001. 73

SQL Server 2000 Handbook

Monitoring Server Operation with SQL Trace

f_q!»l S50L Trace - [local] - [sa monitor] M=] B3
@ File Edt Wiew Took “Window Help - =] x|

1f|iﬁ’|3ﬂ rule| = SOREA

12-19-96 08:01:01.106 Filter Started (ID=4, SPID=14, U=zer==za(POSEIDON-Adminis

— 12-19-96 08:01:00.113 Active connectionz (ID=4, SPID=14, User==a(POSEIDOH™Adm
—— 121996 06:46:56.146 Active connections (ID=3. SFID=11, User==a({POSEIDOH™Adm
—— 1219796 07:59:42 913 Active connections (ID=2, SPID=13, Uszer==a(POSEIDOH™Adm
—— 121996 07:59:16 . 816 Active connection= (ID=1, SFID=12, User==a{POSEIDOH™Adm
— 121996 08:01:17.720 SQL (ID=3, SPID=11, User=sa(POSEIDOH-Administrator). Ap
=elect suser_namnel)

gqo

— 12-19-96 08:01:18.140 SOL (ID=3, SFID=11, U=zer=sa(POSEIDCH-~Admini=trator). Ap
=2t showplan on

go
— 1219796 08:01:18.460 SOL (ID=3. SFID=11, User==a(POSEIDOH-~Administrator). Ap
=zelect authors.au id, titles. title, title=s . vtd_=ales

from authors, titleauthor, titles

where authors. au id = titleasuthor . au id

and title=.title _i1d = titleauthor title id

and au_lname like 'CX'
go
— 1271996 08:01:19.030 SOL (ID=3., SPID=11, User=sa(POSEIDOHN-Administrator). Ap
==t showplan off
go

KN i
Active filkers 2

Optimiser Hints

Optimiser hints may be specified on a SELECT statement that force the query optimiser to use
the specified index. The cost criteriathe SQL Server assigned to a query are complex and it is
likely that the statistics have not been updated or that an appropriate index has not been
defined if SQL Server is selecting the wrong query path.

The optimiser hints exist to override the optimiser and helps to overcome holes in the design
of the optimiser where unoptimised queries dip through. Many of these have been patched
and the optimiser should be better at determining the best access path to data than all but the
most experienced database administrators. It is recommended that optimiser hints are only
employed where it proves impossible for the optimiser to recognise the required indexes/

Onetrick to force the optimiser into considering
alternative query paths isto change the join order of a
multi table query. The optimiser determinesthejoin order
early in the optimisation process and changing the join
order may force it to reconsider and choose a faster query
path. Alternatively split the query up into several simple
selects to give the optimiser a set of less complex join
optimisations.

Clustered Indexes

Each table may have a clustered index which physically sorts the table into a particular order.
Thisis useful where many processes require that the table is processed in a particular order.
Transactions in an accounting system for example are often accessed in date order and a
clustered index on the date might seem to be appropriate at first glance.

© REDWARE 1996,2001. 74

SQL Server 2000 Handbook

Clustered Indexes are useful for optimising querieson a
range of values such as a date range.

Adding new records to any table will require updates on the table and all associated indexes.
Datais stored on the disk in logical pages and once that appropriate page is found, the page is
locked and the data written in the correct place. Each page however may contain data relating
to more than one record and several users may reguire to write to the same page at the same
time. The server will of course handle this contention.

Clustered indexes will place sorted data into the pages so that sorted records may be next to
each other in the same page. When two new records are added in a table with a sorted index
on the date, for example, they may be added into the same page. The users are competing for
the same resource and a bottleneck occurs.

Clustered indexes should not therefore be defined on a sort order that is the same or similar to
the sort order of new records as they are added as this would cause contention in high
transaction systems.

L Server 6.5 improves on this bottleneck but careis
still required when selecting the clustered index.

Index Tuning Wizard

Stored Procedure Recompilation

Queries are often used within stored procedures to perform a variety of tasks. The query plan
is determined when the stored procedure isinitially compiled and is not updated even when
the UPDATE STATISTICS command isrun on atable that is used in the query.

The procedure may be executed with a recompile option to force recompilation of the
procedure at runtime. Thiswill ensure that the optimiser is used in any queries but is costly as
the server must perform extra work each time the procedure is executed:

exec byroyalty 40 with recompile

Another option is to define the Stored Procedure with the Recompile option by adding the
WITH RECOMPILE keywordsin the CREATE PROCEDURE syntax of the stored procedure
definition.

This forces the stored procedure to be recompiled each time it is executed and is suitable if the
stored procedure is called infrequently and requires different query plans each time. This
might occur if parameters were passed that sometimes access only afew records and other
times the whole table.

Recompilation each timeis inefficient and not suitable for
stored procedures that are in constant use.

A system stored procedure can be used to automatically recompile each stored procedure that
references a particular table. This stored procedure is best run after the statistics for the table
have been updated.

The following example will update statistics on the Authors table and recompile the query
plans for any stored procedure that used the Authors table:

UPDATE STATITICS authors
sp_recompile authors

© REDWARE 1996,2001. 75

SQL Server 2000 Handbook

Creating a Stored Procedure with Recompile

:
—'I‘

Procedures: | bprayalty [dbal |£I @

if exi=t=z (=elect #* from sy=sobjects wherse id = object_id{ 'dbo. Hs#
drop procedure dbo. byrovalty =
=0

CREATE PEOCEDURE byrowvalty @percentage int
WITH RECOMPILE AS

SELECT auw_id FROM titleauthor

WHERE titleauthor . rovaltyper = @percentage
=]

GREANT EXECUTE ON dbo.byroyvalty TO public
50

GRANT EXECUTE ON dbo. byrovalty TO guest
50

-4-|| -

Sophisticated programmers may find that the optimisation for a stored procedure differs
according to the parameters passed to the procedure if the number or records selected varies
considerably for example. Several stored procedures may be written and run with parameters
defined to optimise the query for that particular type of parameter value. Alternatively
parameters can be used in the SELECT statements so the optimiser cannot determine the
guery plan in advance of execution.

Deferred Updates

Many SQL Server update commands use a deferred update where the changes are made the
transaction log and the old record deleted and the new one inserted. This can have an adverse
effect on a high transaction system.

Non-deferred, or Direct, updates 'in place' can be designed that update the record without
deleting and inserting records. This requires that no changes are made to the clustered index or
to variable width fields so that the changed record can remain on the same page. The table
should not have atrigger that updates other table nor should columns involved in referential
integrity be updates.

Direct updates not-in-place use a delete followed by an update but are performed in asingle
pass. These require that no join is specified and that the index used to select the records is not
updated.

Locking Issues

SQL Server, in common with other servers, will use optimistic record locking by default.

SQL Server performs all internal locking at the page level. A page contains 2K worth of
information and may therefore contain more than one table record. A shared lock is placed on
apage whenever it is read by a user program. This shared lock is upgraded to an Update lock
when the server plans to write datato arecord and then to an Exclusive lock before datais
actually written to any record within the page. The locking manager will resolve any
deadlocks and issues where different users attempt to update the same record at the same time.

© REDWARE 1996,2001. 76

SQL Server 2000 Handbook

Read only databases benefit from having the read only
option set so that any shared locking overhead is
removed.

Locking issues come into play on high transaction systems with the potential for many
deadlocks. Minimising the records read in a single transaction will reduce the number of
shared locks placed on each table. Thisthen allows SQL Server to place Update locks more
efficiently and allow the programmer to program alocking strategy for critical transactions.

The BEGIN TRANSACTION statement matched with the
COMMIT TRANSACTION or ROLLBACK
TRANSACTION statements help to define smaller size
transactionsin a stored procedure.

The optimiser hints of a SELECT statement allow a programmer to specify specific and
override the default use of shared locks. The HOLDLOCK option will ask the server to
maintain the shared locks on a set of records until the end of the transaction.

The UPDLOCK optimiser hint will specify that a SELECT statement uses Update locks
immediately instead of shared locks and can be used when the program is attempting to update
all recordsin the select query.

Page locks are automatically escalated to table level if a specified number are issued on a
single table. The SELECT statement can be used to request a shared table lock immediately
without using the escalation level if all records in atable are to be processed:

BEGIN TRAN
SELECT count(*) FROM taborder (TABLOCK HOLDLOCK)

Alternatively, the PAGLOCK hint will prevent escalation to a shared table lock if thisis not
desirable in a high transaction system.

The Database Administrator may need to set the
configuration on the database to cope with some locking
scenarios.

© REDWARE 1996,2001. e

SQL Server 2000 Handbook

11. Configuration

Configuration in most organisations is best left to an experienced Database Administrator as
there are many ramifications from setting each option. These notes are not intended as hints
for configuration of a production database but provide some hints for initial configuration
problems experienced when first starting with SQL Server in a development environment.

Server Configuration

Various configuration parameters may be set in the SQL Enterprise manager by selecting the
required server and rightclicking to select the CONFIGURE window:

Server Configuration

Server Configuration/Options - [LOCAL]

Server Options Security Options Configurstion | Aftributes
Configuration hAinirmLm helEr<imLm Funning Current ﬂ
logwrite sleep (ms) -1 S0 [u]]
max async 0 1 255 [o
max text repl size [} 2147453647 |65536 55536
max sworker threads 10 1024 2505 255
mediia retention 0 365 0 0 [
mEmary 2300 1043576 4096 095
nested triggers [} 1 1 1
netvwork packet size =12 F27ET 4096 4096
open databazes o 327ET 20 20
open objects 100 2147453647 (500 200 J

-

Description:

Maximum size (in 2K units) of system memory available for SEL Server. Takes
effect when SQL Server is restarted.

Cancel Help

Memory

The memory specified for SQL Server can be determined by using the DBCC MEMUSAGE
command in the |SQL window.

© REDWARE 1996,2001. 78

SQL Server 2000 Handbook

DBCC MEMUSAGE

[Query - [local)\masterisa M=l E
@l ...F"lnl El QEl:lmaster j| Queties: | #1 dboc memuzage j EI = | .l
Query | Results Statistics WO |
STEEP 1 a
The tvpe of quervy is DBCC_CMD —
Hemory Uszage: o
Heg. 2K Blks Bvtes
Configured MHemory: 8.0000 4096 8388608
Code =ize: 1.71k6 879 1800000
Static Structures: 0.2471 127 259072
Lock=s: 0.2861 147 00000
Open Object=: 0.1144 549 120000
Open Databa=ses: 0.0031 2 3220
O==r Context Areas: 0.7506 385 7arooz
Page Cache: 3.3228 1702 3484192
Proc Header=: 0.0800 41 83936
Proc Cache Buf=: 1.3457 6a9 1411072
< | _|J
@|g| | | Connections : 1 1, 1451 45 |

Do not specify too much memory because NT still needs to
run.

Lock Escalation Percentage

Lock escalation determines the number of shared pages |ocks issued before the server
upgradesto atable lock. The lock escalation percentage is a useful initial property to set if
there are problems with locking to escalate when a certain percentage of pagesin the table are
locked rather than an absolute number.

Network Packet Size

The default packet size is 4096 and may require changing in specific circumstances.

Thisis a connection property which can be specified by
the ODBC driver.

Open Databases

The default maximum number of database for simultaneous connection is 12.

User Connections

The default user connectionsis 15. Some applications may use more than one connection and
thisis a common problem initially. Take care to minimise the connections used by the
application because each connection specified in the configuration uses about 40K of memory.

© REDWARE 1996,2001. 79

SQL Server 2000 Handbook

Database Configuration

Size of tempdb

The tempdb database is used by SQL Server for al worktables. The default sizeis only 2MB
and this will need to be enlarged before any sensible workload even for a single user can be
performed.

Truncate Log on Checkpoint

Development databases do not often need a transaction log as there are too many changes
made for a backup policy to be effective. The transaction log may fill up if many records are
changed or uploaded and specifying the Truncate Log option on the database will stop SQL
Server from creating alarge Log file asit will be automatically truncated at every opportunity.

Truncate Log on Checkpoint

Edit Database - [LOCAL]\datred
Datahase | Oyticrs | Permissions
[T Select Into / Bulk Copy [T Single User
[T Columns Mull by Detaul [CBEO Use Only
[T o Checkpairt on Recovery [Eead Cnly

¥ Truncate Log on Checkpoirt

De=cription:

When zet, the transaction log is truncated every time the CHECKPOIMNT checking process occurs.

Ok Cancel Help

Deleting a Database

The corresponding .DAT fileis not deleted when a database is dropped. Use the operating
system to delete thisfile but take care.

Backups

Createinitial backups of the MASTER, MODEL, and MSDB databases for recovery purposes
aswell asthe devel opment databases.

The MASTER database contains changes to database configurations and system tables and
should be backed up after any changes to the database metadata.

The NT registry should also be backed up to help with a disaster situation.

© REDWARE 1996,2001. 80

SQL Server 2000 Handbook

12. Security

SQL Server has an internal security mechanism that offers sophisticated layers of control to
all objects within a database.

Microsoft have provided an integrated security mode which integrates security with NT
security. Thisinvolves the creation of two NT user groups called SQLAdmins and SQL Users
and the maintenance of SQL Server security using the SQL Security Manager application.

This handbook originally described integrated security. However from a devel opers point of
view, security issimpler if controlled using SQL Server standard security and consequently
discussion in this basic overview islimited to SQL Server security.

Security is specified in the Server Configuration window.
Standard Security

Server Conhguration/Ophtions - [LOCAL]

Server Options Security Cptions: Configuratian Aftributes

—Login Security Mode
% Standard

 Windowes NT Integrated
 Mixed

Default Login: Igues:t

Diefautt Domain: IPOSEIDDN'IAdministratu::r

[~ Set Hosthame to Userilame

—&udit Level
[T Successful Login
[Esiled Login

—Mappings
Map I(dnmain separatar ') j
Mao# | El
T I(spacej j

Ok I Cancel | i) Pl 2 [y Help

Server Logins

The SQL Server application requires Logins to be defined for each type of user that requires
access to the database server. Logins are global to the Server and are mapped to individual
users specified for each database.

© REDWARE 1996,2001. 81

SQL Server 2000 Handbook

Specifying a New Login
Manage Logins - [LOCAL])

Login Marme: Idire::’tn:-r j

Drop |
PaSSWDrd I**********
Default Lanousge: IﬁDefaurtb j Hels |

—Databaze Access

Ciatabase Permit |Default [User Aligs Group
master v

tmcciel

ligt=e]a]

pubs

tempdb

Server Logins are global to each server and are the user identifier and password that are used
to log onto the server with the ODBC datasource.

Database Users

Users are defined for each Database and determine access to the database. The creator of the
database is defined as the DBO user and has all privileges on the database.

Additional users can be created from the SQL Executive by selecting the Database and
expanding the outline for the Groups/Users option and righclicking to select the New Users
option.

© REDWARE 1996,2001. 82

SQL Server 2000 Handbook

Creating a new User for a Database

Manage Users - [LOCAL]\pubs Ed

Liser Matme: Idireu:tu:ur j Aol |
- |] e

Graup: probe
pubsuser fEf |

repl_pubklizher

cAlEEEE ————repl_subscriber
Avatakle Comins: wisitar 0] LTS
Login I Alizz |

e [e == |
=-EEmate |

Each Database User is mapped to a Server Login when adding the user so that SQL Server can
automatically determine the Database User when a Server Login logs onto the system. The
Database User and Server Login can be given the same names to avoid confusion.

The Aliased Logins mover in the Manage Database Users
window may be used to add several Server Loginsto an
individual Database User.

Permissions

A database initially has permissions set for the DBC Database User who has all available
permissions and for the Public user group who have the default permissions.

The permissions for the PUBLIC group can be revoked using the Object Permissions window
available in the SQL Enterprise Manager. To revoke all permissions for PUBLIC, select the
BY USER Page and select the PUBLIC Group and then press the REVOKE ALL button
followed by SET to remove any permissions from the Public group.

Permissions for a specific user may be granted with the Grant All button. The Object
Permissions window can be used to select all Tables, Views, or Stored Procedures and grant
and revoke permissions accordingly.

© REDWARE 1996,2001. 83

SQL Server 2000 Handbook

Setting Permissions for a User

Object Permizzions - [LOCAL]\pubs |

By User By Ohject |
UseriGrou: Iﬁ directar j Ohject Fiters
[Tahles v Al Objects

o L=eriGraup

[+ Stored Procedures Rewvoke Al

Wembst of: $ ublic W “iews " Objects Granted isrant Al |

[~ Column Level Permissions

Type |Select | nsert [Update|Detete [Execute ORI | | cowmn | Select [Update |

authars dbo EEH
byrovatty [dbo = L
discounts [dbo wF | MF | T | eF »
emploves [dbo = | = | = | (= »
iohs dbo P | M| M| e ™
pub_info |dbo P | M| M| e &
publishers |dbo wF | MF | T | eF »
reptal dhio =] L =]

Granted Revoked Grant Pending Resake Pending

Cloze | Help

Individual Tables can be selected for each user and SELECT, INSERT, UPDATE and
DELETE permissions applied. Each field on each table may also have Select and Update
permissions individually applied per User.

Stored Procedures may have EXECUTE permissions granted or revoked to allow only certain
users to run them.

Database Groups

A Database Group may be defined to define overall security for a Group of Database Users.
Theindividual permission differences for a specific user may then be granted or revoked for
theindividual user.

Creating a Database Group

Manage Groups - [LOCAL)\pubs

Grou; Ireadn:nnl':.f j

—Databazse Users
Uzers: Uzers in Groug: &l
clbolpublic) director Cloge |
S wigitor |

Help

=-EEmayE |

© REDWARE 1996,2001. 84

SQL Server 2000 Handbook

13. Index
@@FETCH_STATUS.....cooevveeeeveeeie e 55 Natural JOiN......ccoeeeevereeerenineneeee e 19
@@mMax_CoNNECioNS..........ccceeveeeeereesieenn, 53 NUI e 32
O @IOWCOUNL....c.ceveeeeseeeeessreeeeesreeeeeanes 53, 63 ODBC .. 10
@@VEISION....oveieieeeeeciee e eee e e sbee e 53 Optimiser HINtS........ccooueveiineninereeereeenes 74
ALTERTABLE ..o 34 (O 1111 2N o 1] o TS 20
BaCKOffiCe.....eiereeie e 9 PermiSSiONS.......ccocevereneeeree e 83
BEGIN....ooiiiieeeeceeeere e 64 Primary K&yocoeovevereie e 67
CASE ..ot e 54 RAISERROR......cccoveiriirieirienieesie e 58, 64
(0000151 =1 | £ T 8,33 Referential Integrityccoovvevvveecvccernenn, 66, 67
COVEred iNAEXES......ccovevervrere e 72 Registering the Server........cccoevevvvvcececceenn. 13
CREATE PROCedUre.........cccovevereererernennne 46 Replication........ccocveeevererere e 10
CREATE TRIGGER.......ccoeovinenineenine 62 ROLLBACK TRANSACTION.......ccceeeuee. 64
CUISOTS vttt seens 55 SELECT ..ot 16, 52
Data DISTINCT ..ot 20
B 1= TS 31 FROM .ottt 18
data manipulation language..............ccceuee.. 6 HAVING. ..ot 20
database definition language............cccc...... 6 ORDER BY ..ot 19
DBCC TRACEONcccovvirieeriiieeseenieennns 73 WHERE ..ot 17
DECLARE.......ooo e 52 Showplan ..o 72
(D= - 1 £ S 32 SO R (S 1= 10 S 56
Delete SQL Enterprise Managerccveveveecerenns 9,12
Trigger Validationccccoevvvveneceeneenn, 67 SQL Server 6.0 ...ocueeeeeeerece e 7,34
DELETE. ..ottt 23 SQL Server 6.5coveeereneneeee e 7
END ..ottt 64 SQL Service Managerccoceeeeereeerneeneenns 12
EXECUE.....oceeieeeeie et 47 standard SECUFLYcoeeverereeiereee e 81
Extended Procedures..........cccoeeeiinincinnene 57 Stored Procedure
Mall .o 57 Parameters.......ooveeerienere e 49
FETCH . 55 Parameters passed by Reference............... 50
Field Recompilation.........ccoceovevenenenencncnenee 75
TYPES oo 29 Returning Valuesccccovcvvvvevececeencne 50
Validation in Triggerccoeeevvreeerenieenn 64 Stored Procedures.........ccovvevveeeceenenn 10, 46
FOreign Key ... 36, 66 SYDASE....o e 6
GOTO ..t 52 System Procedures.........coveveeeeeererenennenne 56
GIOUP. ...ttt 84 Task Scheduling.......ccoeeerineiricreeee 9
IF. . ELSE ..o 51 Temporary Tables........ccoveveeneneincrieeene 44
Indexes the SQL Enterprise Manager.........c.ccoceveruenene 9
Allow Duplicate ROWSccooereeerennnn. 41 I] o = U RPRUSSI 62
Clustered........cooevveeieneneneeeee e 36, 74 Program Structure..........coceveeeveceeieeeene 62
Ignore Duplicate Keyccccooeeereeneriennen. 41 THIQOEIS. e 10
Ignore Duplicate ROW..........cccceoeveeeeeenen. 41 UPDATE. ..ot 23,65
OPLiMISAION ..o 70 UPDATE STATISTICS......cceeveerere e 70
INSERT ..ottt 22 LU 82
integrated SECUNLYcccovveeeereererievese e 81 VIBWS ..ttt eneas 10
[0 (] o 76 WHERE ..ot 70
[0 o] o IO 81 WHILE ..o 52
Manage Tables Window..........ccceveervrnnnne. 32 XP_emAshell ..o 57
Advanced Features.........cccooevererenereenn. 33 XP_Sendmailccooviiirenieee e 57
MODEL ..ottt 29 XP_Startmailcoceveeiiieeeee e 57

© REDWARE 1996,2001.

85

